Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape

Authors

  • Áron Bihaly Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.
  • Dóra Vaskor Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.
  • Károly Lajos Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.
  • Miklós Sárospataki Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1. https://orcid.org/0000-0002-3306-1470

DOI:

https://doi.org/10.56617/tl.3576

Keywords:

landscape composition, bees, honeybee, Apis mellifera, edge effect

Abstract

Pollination is a very important ecosystem service for agriculture, because it has a direct effect on the quantity and quality of the yield. However, the composition of the agricultural landscape, the amount and the distribution of the semi-natural habitat patches (SNH) can have an important effect on the structure and composition of the pollinator assemblages. The goal of our survey was to determine the effect of the adjacent SNH patches on the structure and composition of the pollinator assemblages of the studied sunflower fields. Our survey was conducted in the Jászság (Central Hungary). We studied 18 sunflower fields, with different types of SNH ('woody', 'herbaceous' and 'no SNH') in the neighbourhood. Pollinators of the 9 sunflower heads were collected in 5, 25, 50 and 75 m distance from the edge of the fields. Apis mellifera was the most dominant (83%) pollinator species, and the number of the detected taxons was very low. Our results suggest a visible, but not significant edge effect. On the other hand, the abundance of the pollinators was the highest on the fields with herbaceous SNH and the lowest on the fields without any SNH. Consequently, the presence of the adjacent semi- natural habitats can have a significant effect on the abundance of the pollinators on sunflower fields.

Author Biographies

  • Áron Bihaly, Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.

    bihalyaron@gmail.com

  • Dóra Vaskor, Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.

    vadori@gmail.com

  • Károly Lajos, Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.

    lajos.karoly.attila@phd.uni-szie.hu

  • Miklós Sárospataki, Szent István University, Faculty of Agricultural and Environmental Sciences, Department of Zoology and Ecology, 2100 Gödöllő, Páter K. u. 1.

    sarospataki.miklos@mkk.szie.hu

References

Allen-Wardell G., Bernhardt P., Bitner R., Burquez A., Buchmann S., Cane J., Cox P. A., Dalton V., Feinsinger P., Ingram M., Inouye D., Jones C. E., Kennedy K., Kevan P., Koopowitz H., Medellin R., Medellin- Morales S., Nabhan G. P., Pavlik B., Tepedino V., Torchio P., Walker S. 1998: The potential consequences of pollinator declines on the conservation of biodiversity and stability of crop yields. Conservation Biology 12: 8–17.

Bartomeus I., Potts S. G., Steffan-Dewenter I., Vaissière B. E., Woyciechowski M., Krewenka K. M., Tscheulin T., Roberts S. P. M., Szentgyörgyi H., Westphal C., Bommarco R. 2014: Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2: e328 https://doi.org/10.7717/peerj.328

Bennett A. B., Isaacs R. 2014: Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agriculture, Ecosystems & Environment 193: 1–8. https://doi.org/10.1016/j.agee.2014.04.016

Földesi R., Kovács-Hostyánszki A., Kőrösi Á., Somay L., Elek Z., Markó V., Sárospataki M., Bakos R., Varga Á., Nyisztor K., Báldi A. 2016: Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agricultural and Forest Entomology 18: 68–75. https://doi.org/10.1111/afe.12135

Garibaldi L.A., Aizen M.A., Klein A.M., Cunningham S.A., Harder L.D. 2011: Global growth and stability of agricultural yield decrease with pollinator dependence. PNAS, Proceedings of the National Academy of Sciences of the United States of America 108: 5909−5914. https://doi.org/10.1073/pnas.1012431108

Hevia V., Bosch J., Azcárate F. M., Fernández E., Rodrigo A., Barril-Graells H., González J. A. 2016: Bee diversity and abundance in a livestock drove road and its impact on pollination and seed set in adjacent sunflower fields. Agriculture, Ecosystems & Environment 232: 336–344. https://doi.org/10.1016/j.agee.2016.08.021

Kremen C., Williams N.M., Thorp R.W. 2002: Crop pollination from native bees at risk from agricultural intensification. PNAS, Proceedings of the National Academy of Sciences of the United States of America 99: 16812–16816. https://doi.org/10.1073/pnas.262413599

KSH 2017: A fontosabb növények vetésterülete, 2017. június 1., [https://www.ksh.hu/docs/hun/xftp/gyor/vet/vet1706.pdf]

Matson P. A., Parton W. J., Power A. G., Swift M. J. 1997: Agricultural intensification and ecosystem properties. Science (Washington) 277: 504–509. https://doi.org/10.1126/science.277.5325.504

Palmer M., Bernhardt E., Chornesky E., Collins S., Dobson A., Duke C., Gold B., Jacobson R., Kingsland S., Kranz R., Mappin M., Martinez A. L., Micheli F., Morse J. Pace M., Pascual M., Palumbi S., Reichman O. J., Simons A., Townsend A., Turner M. 2004: Ecology for a crowded planet. Science 304: 1251– 1252. https://doi.org/10.1126/science.1095780

Sardiñas H. S., Kremen C. 2015: Pollination services from field-scale agricultural diversification may be context-dependent. Agriculture, Ecosystems & Environment 207: 17–25. https://doi.org/10.1016/j.agee.2015.03.020

Sardiñas H. S., Tom K., Ponisio L. C., Rominger A., Kremen C. 2016: Sunflower (Helianthus annuus) pollination in California’s Central Valley is limited by native bee nest site location. Ecological Applications 26(2): 438–447. https://doi.org/10.1890/15-0033

Sárospataki M., Bakos R., Horváth A., Neidert D., Horváth V., Vaskor D., Samu F. 2016: The role of local and landscape level factors determining bumblebee abundance and richness. Acta Zoologica Academiae Scienciarum Hungaricae 62(4): 387–407. https://doi.org/10.17109/AZH.62.4.387.2016

Sárospataki M., Báldi A., Batáry P., Józan Z., Erdős S., Rédei T. 2009: Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary. Community Ecology 10: 182–188. https://doi.org/10.1556/ComEc.10.2009.2.7

Susic Martin C., Farina W. M. 2015: Honeybee floral constancy and pollination efficiency in sunflower (Helianthus annuus) crops for hybrid seed production. Apidologie 47: 161–170. https://doi.org/10.1007/s13592-015-0384-8

Tahir Rasheed M., Inayatullah M., Shah B., Nazeer A., Khan A., Murad A., Saeed A., Khwaja J., Adnan M., Huma Z. 2015: Relative abundance of insect pollinators on two cultivars of sunflower in Islamabad. Journal of Entomology and Zoology Studies 3(6): 164–165.

Terzić S., Miklic V., Čanak P. 2017: Review of 40 years of research carried out in Serbia on sunflower pollination. Oilseeds and fats, Crops and Lipids 24 (6): 2–7. https://doi.org/10.1051/ocl/2017049

Published

2018-07-16

Issue

Section

Articles

How to Cite

Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape. (2018). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 16(1), 45-52. https://doi.org/10.56617/tl.3576

Similar Articles

11-17 of 17

You may also start an advanced similarity search for this article.