Nitrate loss from fertilized crop fields: does slope steepness matter?
DOI:
https://doi.org/10.56617/tl.3623Schlagwörter:
runoff, percolation, rainfall simulation, pore water, evaporationAbstract
Nitrogen (N) is one of the most important nutrients that plants and microbiota need. In general, under temperate conditions its availability in soil limits biological production especially on intensively cultivated crop fields. Cultivation gradually mitigates organic carbon and nitrogen content of the soil hence a continuous N supply is of crucial importance for reasonable crop production. Therefore, N fertilization is a necessity that has additional environmental effects. Most of the applied fertilizers contain inorganic N, mainly nitrate, which is soluble in water and, accordingly, mobile in the soil. Nitrate can be delivered from the soil by surface runoff or percolation to the deeper layers and the ground water. Present study aimed to compare nitrate losses triggered by the same precipitation event (40 mm h-1) on different slope steepness (5 and 12%) and soil status (seedbed; sealed and crusted condition) on a Cambisol right after inorganic N fertilizer (100 kg ha-1) application using laboratory rainfall simulation. Results indicated that at each precipitation event, only the first 0.5 mm runoff contained considerable amount of nitrate (~170 mg L-1), while main loss was due to percolation (also ~170 mg L1 but all along the percolation period). Accordingly, slope steepness (and also surface conditions) affects nitrate loss via controlling the volume of infiltrated and percolated water. Namely, the crusted steeper slope had the lowest nitrate loss, because most precipitation water was turned to runoff. Evaporation from the soil surface between the precipitations generated upward moisture movement in the profile that finally triggered a higher nitrate concentration on the surface. This N was supposed to be the reason of the increased nitrate content of initial runoff. Accordingly, nitrate loss is inversely proportional to slope steepness, although the effect is subordinate.
Literaturhinweise
Barczi, A., Centeri, Cs. 2005: Az erózió és defláció tendenciái Magyarországon. In: Stefanovits, P. (szerk.): A talajok jelentősége a 21. században. Magyarország az ezredfordulón. Agrárium. Stratégiai kutatások a Magyar Tudományos Akadémián. p. 221–244.
Bilandžija D., Zgorelec Ž., Kisić I. 2017. Influence of tillage systems on short-term soil CO2 emissions. Hungarian Geographical Bulletin 66(1): 29–35. https://doi.org/10.15201/hungeobull.66.1.3
Burger M., Dumlao M.R., Wang J., Moradi B.A., Horwath W.R., Silk W.K. 2017: Cover Crop Development Related to Nitrate Uptake and Cumulative Temperature. Crop Science Society of America 57(2): 971–982. https://doi.org/10.2135/cropsci2016.09.0741
Burt R., Soil Survey Staff (ed) 2004: Kellogg Soil survey laboratory methods manual. Soil survey investigation report. No 42 USDA NRCS, Lincoln, USA p. 1003.
Buurman P., van Lagen B., Velthorst E.J. (eds) 1996: Manual for soil and water analysis. Backhuys Publishers, Leiden, The Netherlands p. 314.
Caires E.F., Zardo Filho R., Barth G., Joris H.A.W. 2016: Optimizing Nitrogen Use Efficiency for No-Till Corn Production by Improving Root Growth and Capturing NO3-N in Subsoil. Pedosphere. 24(4): 474–485. https://doi.org/10.1016/S1002-0160(15)60058-3
Castellano M.J., David M.B. 2014: Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils. Proceedings of the National Academy of Sciences of the United States of America 111(8) https://doi.org/10.1073/pnas.1321350111
Cataldo D.A., Maroon, M., Schrader L.E., Youngs V.L. 1975: Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid. Commun. Soil Science and Plant analysis 6(1): 71–80. https://doi.org/10.1080/00103627509366547
Centeri Cs., Jakab G., Szabó Sz., Farsang A., Barta K., Szalai Z., Bíró Zs. 2015: Comparison of particle-size analyzing laboratory methods. Environmental Engineering and Management Journal 14(5): 1125–1135. https://doi.org/10.30638/eemj.2015.123
Centeri Cs., Jakab G., Szalai Z., Madarász B.,Sisák I., Csepinszky B., Bíró Zs. 2011: Rainfall simulation studies in Hungary. In Soil Erosion:Causes, Processes and Eff ects. Ed.: Fournier, A.J. New York, NOVA Science Publisher, 177–217.
Charles A., Rochette P., Whalen J.K., Angers D.A., Chantigny M.H., Bertrand N. 2017: Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: A meta-analysis. Agriculture, Ecosystems & Environment 236: 88–98. https://doi.org/10.1016/j.agee.2016.11.021
De Clercq T., Heiling M., Dercon G., Resch C., Aigner M., Mayer L., Mao Y., Elsen A., Steier P., Leifeld J., Merckx R. 2015: Predicting soil organic matter stability in agricultural fields through carbon and nitrogen stable isotopes. Soil Biology & Biochemistry 88: 29–38. https://doi.org/10.1016/j.soilbio.2015.05.011
Filep T., Rékasi M. 2011: Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma 162: 312–318. https://doi.org/10.1016/j.geoderma.2011.03.002
Frantál, B., Kunc, J., Nováková, E., Klusáček, P., Martinát, S., & Osman, R. (2013): Location Matters! Exploring Brownfields regeneration in a Spatial Context (Case Study of the South Moravian Region, Czech Republic). Moravian Geographical Report, 21(2): 5–19. https://doi.org/10.2478/mgr-2013-0007
Gagnon B., Ziadi N., Rochette P., Chantigny M.H., Angers D.A., Bertrand N., Smith W.N. 2016: Soil-surface carbon dioxide emission following nitrogen fertilization in corn. Canadian Journal of Soil Science 96(2): 219–232. https://doi.org/10.1139/cjss-2015-0053
Garcia-Diaz A., Bienes R., Sastre B., Novara A., Gristina L., Cerda A. 2016: Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems and Environment 236: 256–267. https://doi.org/10.1016/j.agee.2016.12.013
Gelaw A.M., Singh B.R., Lal R. 2013: Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, northern Ethiopia. Land Degradation and Development, https://doi.org/10.1002/ldr.2261
Hassink J. 1997: The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191: 77–87. https://doi.org/10.1023/A:1004213929699
Hati K.M., Swarup A., Mishra B., Manna M.C., Wanjari R.H., Mandal K.G., Misra A.K. 2008: Impact of long- term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma 148(2): 173–179. https://doi.org/10.1016/j.geoderma.2008.09.015
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014. update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. p. 192.
Izsáki Z. 2010: Effect of N fertilization on the N balance of chernozem meadow soil and the depth distribution of NO3-N between 1990 and 2007. Agrokémia és Talajtan. 59(2): 233–248. In Hungarian with English abstract https://doi.org/10.1556/agrokem.59.2010.2.3
Jakab G., Szabó J., Szalai Z., Mészáros E., Madarász B., Centeri Cs., Szabó B., Németh T., Sipos P. 2016: Changes in Organic Carbon Concentration and Organic Matter Compound of Erosion-Delivered Soil Aggregates. Environmental Earth Sciences 75:144. https://doi.org/10.1007/s12665-015-5052-9
Janssons V., Abramenko K., Berzina L. 2009: Risk assessment of the agricultural pollution with nitrate in Latvia. LLU Raksti 22(3179): 1–11.
Kassam, A., Basch G., Friedrich T., Gonzalez E., Trivino P., Mkomwa S. 2017: Mobilizing greater crop and land potentials sustainably. Hungarian Geograhical Bulletin 66(1): 3–11. https://doi.org/10.15201/hungeobull.66.1.1
Lassaletta L., Billen G., Grizzetti B., Anglade J., Garnier J. 2014: Fifty-year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett. 9: https://doi.org/10.1088/1748-9326/9/10/105011
Maillard É., Angers D.A., Chantigny M., Lafond J., Pageau D., Rochette P., Lévesque G., Leclerc M.L., Parent L.É. 2016: Greater accumulation of soil organic carbon after liquid dairy manure application under cereal- forage rotation than cereal monoculture. Agriculture, Ecosystems & Environment 233: 171–178. https://doi.org/10.1016/j.agee.2016.09.011
Meisinger J.J., Palmer R.E., Timlin D.J. 2015: Effects of tillage practices on drainage and nitrate leaching from winter wheat in the Northern Atlantic Coastal-Plain USA. Soil and Tillage Research 151: 18–27. https://doi.org/10.1016/j.still.2015.02.007
Menció A., Mas-Pla J., Otero N., Regas O., Boy-Roura M., Puig R., Bach J., Domenech C., Zamorano M., Brusi D., Folch A. 2016: Nitrate pollution of groundwater; all right…, but nothing else? Science of the Total Environment 539: 241–251. https://doi.org/10.1016/j.scitotenv.2015.08.151
Nishina K., Ito A., Hanasaki N., Hayashi S. 2017: Reconstruction of spatially detailed global map of NH + and NO − application in synthetic nitrogen fertilizer. Earth Syst. Sci. Data 9: 149–162. https://doi.org/10.5194/essd-9-149-2017
Osterholz W.R., Rinot O., Liebman M., Castellano M.J. 2016: Can mineralization of soil organic nitrogen meet maize nitrogen demand? Plant Soil https://doi.org/10.1007/s11104-016-3137-1
Øygarden L., Deelstra J., Lagzdins A., Bechmann M., Greipsland I., Kyllmar K., Povilaitis A., Iital A. 2014: Climate change and the potential effects on runoff and nitrogen losses in the Nordic–Baltic region. Agriculture, Ecosystems & Environment 198: 114–126. https://doi.org/10.1016/j.agee.2014.06.025
Salles C., Poesen J., Borselli L. 1999: Measurement of simulated drop size distribution with an optical spectro pluviometer: sample size considerations. Earth Surface Processes and Landforms 24: 545–556. https://doi.org/10.1002/(SICI)1096-9837(199906)24:6<545::AID-ESP3>3.0.CO;2-D
Shibata H., Galloway J.N., Leach A.M. 2017: Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio 46(2): 129–142. https://doi.org/10.1007/s13280-016-0815-4
Snyder C.S., Davidson E.A., Smith P., Venterea R.T. 2014: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions. Curr Opin Environ Sustain. 9-10: 46–54. https://doi.org/10.1016/j.cosust.2014.07.005
Stefanovits P., Filep Gy., Füleki Gy. 1999: Talajtan. Mezőgazda kiadó, Budapest, Hungary, ISBN 978-963-286- 563-8 (In Hungarian).
Szabó B., Szabó J., Centeri Cs., Jakab G., Szalai Z. 2017a: Infiltration and runoff measurements on arable land with different slopes and rainfall intensities. COLUMELLA: Journal of Agricultural and Environmental Sciences 4(1): 153–156.
Szabó J., Jakab G., Szabó B. 2015: Spatial and temporal heterogeneity of runoff and soil loss dynamics under simulated rainfall. Hungarian Geographical Bulletin 64: 25–34. https://doi.org/10.15201/hungeobull.64.1.3
Szabó J., Szabó B., Szalai Z., Ringer M., Jakab G. 2017b: Runoff and infiltration – case study of a Cambisol. COLUMELLA: Journal of Agricultural and Environmental Sciences 4(1): 127–130.
White C.M., DuPont S.T., Hautau M., Hartman D., Finney D.M., Bradley B., LaChance J.C., Kaye J.P. 2017: Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agriculture, Ecosystems & Environment 237: 121–133. https://doi.org/10.1016/j.agee.2016.12.016
Zámbó L., Weidinger T. 2006: Investigations of karst corrosional soil effects based on ranfall simulation experiment. In: Kiss A., Mezősi G., Sümeghy Z. (eds) Táj, környezet és társadalom. Ünnepi tanulmányok Keveiné Bárány Ilona professzor asszony tiszteletére, Szeged, pp 757–765. (In Hungarian).
Zhang X., Sun M., Wang N., Huo Z., Huang G. 2016: Risk assessment of shallow groundwater contamination under irrigation and fertilization conditions. Environ Earth Sci. 75:603. https://doi.org/10.1007/s12665-016-5379-x
Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Copyright (c) 2017 Jakab Gergely, Karsai Gergely, Szalai Zoltán, Szabó Judit
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitungen 4.0 International.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).