Environmental aspects of assessment of oxbow lakes near Alsó-Tisza and Hármas-Körös based on sediment analyses results
DOI:
https://doi.org/10.56617/tl.3786Keywords:
oxbow, sediment, heavy metal content, ecological risk, Lower-Tisza, Hármas-KörösAbstract
Floodplains and oxbow lakes of the plains represent extraordinary natural and ecological values. Besides their gene preserving function, they have got a role in landscape diversity, tourism and water reserve. To let the oxbows be able to provide these functions, there is a need for continous monitoring and repair. The condition of oxbow lakes can be measured by analyzing the quality of water and sediment. During our research we appraised the status of oxbow lakes of Lower-Tisza and Hármas-Körös rivers by the quality of their surface water and bottom sediment, then we assumed the ecological status of the floodplain oxbows based on the ecological risk index defined by the Hakanson-method. According to the Hakanson ecological risk index, the floodplain oxbows of Lower-Tisza river carry a moderate potential ecological risk, while the floodplain oxbows of Hármas-Körös river can be categorized with low potential ecological risk.
References
Boekhold A.E. 2008: Ecological risk assessment in legislation on contaminated soil in The Netherlands. Science of the Total Environment 406: 518−522. https://doi.org/10.1016/j.scitotenv.2008.07.018
Farsang A. 2003, 2004, 2006, 2007: Talajtani szakvélemény a Mártélyi Holt-Tisza, a Csongrádi Holt-Tisza, a Nagyfai Holt-Tisza, a Holt-Maros, a Körtvélyesi Holt-Tisza, valamint a Hármas-Körös három holtága, az Endrődi Középső-Holtág, a Fűzfászugi- és a Hantoskerti-Holtágak víztelenített fenéküledékének, kotrási iszapjának termőföldön történő elhelyezésére. Kézirat. SZMEKTIT Bt.
Hakanson L. 1980: An ecological risk index for aquatic pollution control, a sedimentological approach. Water research 14(8): 975−1001. https://doi.org/10.1016/0043-1354(80)90143-8
Irmgard Henning-De Jong Et Al. 2009: The impact of an additional ecotoxicity test on ecological quality standards. Ecotoxicology and Environmental Safety. Elsevier, Pages 72(8): 2037−2045. https://doi.org/10.1016/j.ecoenv.2009.08.009
López-Galván E., Barceló-Quintal I., Solís-Correa He., Bussy Al., Avila-Pérez P., Delgadillo Sm. 2009. Calculation of the Ecological Risk Index in the José Antonio Alzate Dam, State of Mexico, Mecixo. Biological Trace Element Research 135: 121−135. https://doi.org/10.1007/s12011-009-8501-z
Maltby L., Blake N., Brock Tcm., Van Den Brink Pj. 2005: Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environmental Toxicology and Chemistry 24: 379−388. https://doi.org/10.1897/04-025R.1
Newman Mc., Ownby Dr., Mezin Lca., Powell Dc., Christensen Trl., Lerberg Sb., Anderson B-A. 2000: Applying species-sensitivity distributions in ecological risk assessment: assumption of distribution type and sufficient number of species. Environmental Toxicology and Chemistry19: 508−515. https://doi.org/10.1002/etc.5620190233
Pálfai I. 2001: Magyarország holtágai. Kiadta a Közlekedési és Vízügyi Minisztérium, Budapest.
Pennington DW. 2003: Extrapolating ecotoxicological measures from small data sets. Ecotoxicology and Environmental Safety 56: 238−250. https://doi.org/10.1016/S0147-6513(02)00089-1
Posthuma L., Suter Gw., Traas Tp. 2002: Species sensitivity distributions in ecotoxicology. Lewis Puplishers, Boca Baton, FL, USA. https://doi.org/10.1201/9781420032314
Qiu H. 2010: Studies on the Potencial Ecological Risk and Homology Correlation of Heavy Metal in the Surface Soil. Journal of Agricultural Science 2: 194−201. https://doi.org/10.5539/jas.v2n2p194
Swartjes F., Carlon C., De Wit N. 2008: The possibilities for EU-wide use of similar ecological risk-based soil contamination assessment tools. Sciences of the Total Environment 406: 523−529. https://doi.org/10.1016/j.scitotenv.2008.07.034
Tamás M., Farsang A., Vavra Á. 2011: Az Alsó-Tisza vidéki és a Hármas-Körös völgyi holtágak környezeti állapot vizsgálata iszapminőségi mutatók alapján. Hidrológiai Közlöny 91: 27−34.
Tang W., Shan B., Zhang H., Mao Z. 2010: Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. Journal of Hazardous Materials 176: 945−951. https://doi.org/10.1016/j.jhazmat.2009.11.131
Van Vliet PCJ., De Goede RGM. 2008: Nematode-based risk assessment of mixture toxicity in a moderately polluted river floodplain in The Netherlands. Science of the Total Environment 406: 449−454. https://doi.org/10.1016/j.scitotenv.2008.06.056
Wheeler Jr., Grist Epm., Leung Kmy., Morritt D., Crane M. 2002: Species sensitivity distributions: data and model choice. Marine Pollution Bulletin 45: 192−202. https://doi.org/10.1016/S0025-326X(01)00327-7
MSZ 21470-50:2006 Környezetvédelmi talajvizsgálatok. Az összes és az oldható toxikuselem-, a nehézfém-, és króm- (VI) tartalom meghatározása.
A 10/2000. (VI. 2.) KÖM-EüM-FVM-KHVM együttes rendelet a felszíni alatti víz és a földtani közeg minőségi védelméhez szükséges határértékekről.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Tamás Margit, Farsang Andrea
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).