Comparison of population density estimation methods for roe deer
DOI:
https://doi.org/10.56617/tl.3427Keywords:
Capreolus capreolus, population density estimation, daylight counting, spotlight, thermal camera, strip transectAbstract
Populations of European roe deer (Capreolus capreolus) are steadily growing in Europe and in Hungary. In order to manage this game species efficiently and to reduce the conflicts related to deer (crop damage, car collisions), it is important to follow their density changes as accurately as possible. The principles of adaptive deer management based on bioindicators could greatly help the work of hunters in the Hungarian Great Plain, but this would require data collected using appropriate methods. New methods and equipment in wildlife management, such as the thermal camera, may offer a new opportunity to survey roe deer populations. In this study, we compared the results of counting roe deer from a car along transects by daylight (0–500 m) and by night with spotlight (0–250 m), as well as from observation points with a thermal camera (in both distance intervals). The investigations were conducted in three lowland small game hunting areas of low forest cover in the No. 101. Tiszazugi Wildlife Management Landscape Unit. We also examined the effectiveness of using a thermal camera at an observation distance greater than the reflector could be used, comparing the distance classes between 0 and 250 m and 250 and 500 m. We performed all three estimation methods for the same five days. There was a significant difference among the population densities determined by the four estimation procedures. The spotlight estimation method gave the highest average value (18,7 individuals/100 ha; SD = 5,2), meanwhile the daylight transect estimation provided the lowest one (11,5 individuals / 100 ha; SD = 3,6). Method using thermal camera resulted in intermediate values between the two other methods (0–250 m: 17,7 individuals/100 ha; SD=6,3; n=5; 0–500 m: 11,6 individuals/100 ha; SD=6,4; n=5). However, post-hoc tests could not reveal any significant differences among the data from different methods. In the case of the thermal camera method, in the distance class between 250 and 500 m, the observed individual density was less than half (8,7 individuals/100 ha; SD=13,9) than in the distance class between 0 and 250 m. Therefore, the detected number of the deer individuals by thermal camera decreased significantly with increasing observation distance beyond the effective range of spotlight. The smallest variance was shown by the data from the daytime transect study, but this method results in an underestimation due to the decreased daytime activity of the roe deer. For the hunting units, the night spotlighting along transects is primarily recommended to determine the minimum population roe deer density, as we were able to detect the most roe deer using this method. Human resource, time and cost requirements of this method are also relatively low and results in the slightest underestimation. The efficiency, human and time costs of the thermal imager might reach a similar level to that when using for a range between 0–250 m. But its high price could be a limit for wide application.
References
Andersen, J. 1953: Analysis of the Danish roe deer population based on the extermination of the total stock. Danish Review. Game Biology 2: 127–155. https://doi.org/10.3406/revec.1961.4238
Andersen, J. 1961: Biology and management of roe-deer in Denmark. Game biology station Kalő. La Terre et La Vie 1: 41–53.
Borkowski, J., Palmer, S.C.F., Borowski, Z. 2011: Drive counts as a method of estimating ungulate density in forests: mission impossible? Acta Theriologica 56: 239–253. https://doi.org/10.1007/s13364-010-0023-8
Burbaite L., Csányi S. 2010: Az őzállomány nagyságának és hasznosításának változása Európában. Vadbiológia 13: 1–11.
Chećko, E. 2016: Estimating forest ungulate populations: a review of methods. Forest Research Papers 72(3): 253–265. https://doi.org/10.2478/v10111-011-0025-6
Csányi S., Szidnai L. 1994: Őzgazdálkodásunk helyzetének értékelése. Vadbiológia 4: 73–107.
Csányi S., Tóth P. (2000): Populáció-rekonstrukció alkalmazása a hazai gímszarvas állomány létszámának meghatározására. Vadbiológia 7: 27–37.
Csányi S. (2002): Populáció-rekonstrukció alkalmazása a muflonállomány létszámának meghatározására. Vadbiológia 9: 54–65.
Csányi S., Majzinger I. 2018: Az őz: ökológiai és alkalmazkodó gazdálkodás. Szent István Egyetemi Kiadó, Gödöllő, p. 39.
Demeter A., Kovács Gy. 1991: Állatpopulációk nagyságának és sűrűségének becslése. Akadémiai Kiadó, Budapest. p. 272.
ENETWILD consortium, Grignolio, S., Apollonio, M., Brivio, F., Vicente, J., Acevedo, P., Palencia, P., Petrovic, K., Keuling, O. 2020: Guidance on estimation of abundance and density data of wild ruminant population: methods, challenges, possibilities. EFSA supporting publication 2020: EN–1876. p. 54. https://doi.org/10.2903/sp.efsa.2020.EN-1876
Ernhaft J. 1996: Összehasonlító populációgenetikai vizsgálatok magyarországi őzpopulációkban. Vadbiológia 5: 92–97.
Focardi, S., De Marinis, A.M., Rizzotto, M., Pucci A. 2001: Comparative evaluation of thermal infrared imaging and spotlighting to survey wildlife. Wildlife Society Bulletin 29 133–139.
Frylestam, B. 1981: Estimating by spotlight the population density of the European hare. Acta Theriologica 28: 419–427. https://doi.org/10.4098/AT.arch.81-35
Hudi J. 2020. (szerk.) Dunántúli egyházleírások a XVIII. századból - A Pápai Református Gyűjtemények Kiadványai, Forrásközlések 5. Pápa
Kovács Gy., Heltay I. 1985: A mezeinyúl. Ökológia, gazdálkodás, vadászat. Mezőgazdasági Kiadó. p. 176.
Lincoln, F.C. 1930: Calculating waterfowl abundance on the basis of banding returns. U.S. Department of Agriculture, Circular 118, p. 6.
Majzinger I. 2009: A magyarországi őzállomány létszámának meghatározása populáció-rekonstrukcióval. Vadbiológia 13: 11–23.
Marcon, A., Battocchio, D., Apollonio, M., Grignolio, S. 2019: Assessing precision and requirements of three methods to estimate roe deer density. PloS One 14(10): e0222349. https://doi.org/10.1371/journal.pone.0222349
Meriggi, A., Sotti, F., Lamberti, P., Gilio, N. 2008: A review of the methods for monitoring roe deer European populations with particular reference to Italy. Hystrix Italian Journal of Mammalogy 19(2): 103–120.
Morellet, N., Gaillard, J-M., Hewison, A.J.M., Ballon, P., Boscardin, Y., Duncan, P., Klein, F., Maillard, D. 2007: Indicators of ecological change: New tools for managing populations of large herbivores. Journal of Applied Ecology 44(3): 634–643. https://doi.org/10.1111/j.1365-2664.2007.01307.x
Morelle, K., Bouché, P., Lehaire, F., Leeman, V., Lejeune, P. 2012: Game species monitoring using road–based distance sampling in association with thermal imagers: a covariate analysis. Animal Biodiversity and Conservation 35.2: 253–265. https://doi.org/10.32800/abc.2012.35.0253
Petersen, C.G.J. 1986: The yearly immigration of young plaice into the Limfjord from the German sea. Report of the Danish Biological Station 6: 1–48.
Pielowski, Z. 1969: Studies on the European hare. XXIII. Belt assessment as a reliable method of determining the numbers of hares. Acta Theriologica 14: 133–140. https://doi.org/10.4098/AT.arch.69-9
Ratcliffe, P.R., Mayle, B.A. 1992: Roe deer biology and management. Forestry Commission Bulletin 105. p. 28
Spitz, F. 1977: Problems of roe deer (Capreolus capreolus) counts. XIII. Congress of Game Biologists. Atlanta
Strandgaard, H. (1967): Reliability of the Petersen method tested on a roe-deer population. Journal of Wildlife Management 31(4): 643–651. https://doi.org/10.2307/3797967
Strandgaard, H. 1974: The roe deer (Capreolus capreolus) population at Kalo and the factors regulating its size. Danish Review of Game Biology 7(1). p. 205. https://doi.org/10.1007/s13364-019-00450-5
Waltert, M., Grammes, J., Schwenninger, J., Roig – Boixeda, P., Port, M. 2020: A case of underestimation of density by direct line transect sampling in a hunted roe deer (Capreolus capreolus) population. Mammal Research 65, 151–160.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Tóth Gergely, Katona Krisztián
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).