Útpálya feletti vadátjárók kialakítási és elhelyezési jellemzői Magyarországon
DOI:
https://doi.org/10.56617/tl.3608Kulcsszavak:
élőhely-fragmentáció, zajvédelem,, közlekedés, elszigetelődésAbsztrakt
Magyarország gyorsforgalmi úthálózata jelentősen fejlődött az elmúlt 20 évben. A fejlesztéseknek köszönhetően emelkedett a kerítéssel ellátott utak hossza, ami az élőhelyfragmentációs hatások erősödését is jelenti. Az utak okozta izoláció mérséklése érdekében vadátjárók épültek az új szakaszokon. A kutatásban 57 útpálya fölött kialakított vadátjárót vizsgáltunk meg műholdfelvételek felhasználásával. Meghatároztuk az átjárók belső és teljes szélességét, teljes hosszukat és a zajvédőfalak hosszát, valamint a szélesség/hosszúság arányt. Osztályoztuk az átjárókat: rámpa kialakítás szerint, zajvédőfalak anyaga szerint valamint a zajvédőfalak lefutása szerint. Továbbá felszínborítási térkép segítségével az átjárók 500 méteres körzetében vizsgáltuk a táji jellemzőket és értékeltük az átjárók elhelyezését. Eredményeink alapján megállapítható, hogy a felüljárók közlekedési folyosójának átlagos szélessége 14,4 méter volt. A szélesség-hosszúság arány pedig 0,16. Ez alapján megálapítottuk, hogy a magyarországi vadátjárók a keskeny átjárók közé sorolhatók. A kialakítási jellemzőkben szintén jelentős variancia volt megfigyelhető, a vizsgált átjárók nem voltak egységesek sem a rámpa kialakításában sem pedig a zajvédőfalak jellemzőiben. Az elhelyezés táji jellemzőinek vizsgálati eredményei alapján megállapítható, hogy magas az agrárterületeken kialakított átjárók száma, ami elsősorban az őz (Capreolus capreolus) számára kedvez.
Hivatkozások
Andrews, A. 1990: Fragmentation of Habitat by Roads and Utility Corridors: A Review. Australian Zoologist, 26(3-4):130–141. DOI: https://doi.org/10.7882/AZ.1990.005
Ballók, Zs., Náhlik, A., Tari, T. 2010: Effects of building a highway and wildlife crossings in a red deer (Cervus elaphus) habitat in Hungary, Acta Silvatica Lignaria Hungarica, 6: 67–74
Bennett, V.J. 2017: Effects of Road Density and Pattern on the Conservation of Species and Biodiversity. Current Landscape Ecology Reports 2:1–11. DOI: https://doi.org/10.1007/s40823-017-0020-6
Bissonette, J. A. 2007: Evaluation of the use and effectiveness of wildlife crossings. National Cooperative Highway Research Program (NCHRP) 25-27. Final report. Trans. Research Board, Washington DC.
Brennan, L., Chow, E., Lamb, C. 2022: Wildlife overpass structure size, distribution, effectiveness, and adherence to expert design recommendations. PeerJ. DOI: https://doi.org/10.7717/peerj.14371
Clevenger, A.P., Waltho, N. 2003: Long-term, year-round monitoring of wildlife crossing structures and the importance of temporal and spatial variability in performance studies, Proceedings of the International Conference on Ecology and Transportation, 293–302.
Clevenger, A.P., Waltho, N. 2005: Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biological Conservation, 121(3): 453–464. DOI: https://doi.org/10.1016/j.biocon.2004.04.025
Clevenger, A. P., Huijser, M. P. 2011: Wildlife crossing structure handbook design and evaluation in North America. Western Transportation Institute. Final Report FHWA-CFL/TD-11-003; p. 224.
Clevenger, A. P., Chruszcz, B., Gunson, K. E. 2001: Highway mitigation fencing reduces wildlife-vehicle collisions. Wildlife Society Bulletin, 29: 646–653.
Csányi S. Márton M., Bőti Sz., Schally G. 2022: Vadgazdálkodási Adattár - 2021/2022. vadászati év. Országos Vadgazdálkodási Adattár, Gödöllő, p. 70.
Dodd, C. K., Barichivich, W. J., Smith, L.L. 2004: Effectiveness of a barrier wall and culverts in reducing wildlife mortality on a heavily traveled highway in Florida. Biological Conservation, 118: 619–631. DOI: https://doi.org/10.1016/j.biocon.2003.10.011
Fahrig, L., Rytwinski, T. 2009: Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecology and Society, 14(1): 21
Forman, R. T. T., Alexander L.E. 1998: Roads and their major ecological effects. Annual Review of Ecology and Systematics 29(1): 207–231. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.207
Forman, R. T. T., Deblinger, R.D. 2000: The Ecological Road-Effect Zone of a Massachusetts (U.S.A.) Suburban Highway. Conservation Biology, 14: 36–46.
Hammer, Ø., Harper, D. A. T., Ryan, P. D. 2001: PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron, 4(1): 9.
Harrington, S., Teitelman, J., Rummel, E., Morse, B., Chen, P., Eisentraut, D., McDonough, D. 2017: Validating google earth pro as a scientific utility for use in accident reconstruction. SAE International Journal of Transportation Safety, 5(2): 135–166. DOI: https://doi.org/10.4271/2017-01-9750
Heffenträger G., Sándor Gy., Tari T., Náhlik A. 2014: Dámszarvas (Dama dama) mezei- és erdei élőhely-preferenciájának vizsgálata, In: Bidló A. Horváth A. Szűcs P. (szerk.): IV. Kari Tudományos Konferencia: Konferencia kiadvány, Sopron, pp. 255–260.
Hughes, W. E., Saremi, A. R., Paniati, J. F. 1996: Vehicle-animal crashes: an increasing safety problem. Institute of Transportation Engineers Journal, 66: 24–28.
Iuell, B., Bekker, H., Cuperus, R., Dufek, J., Fry, G., Hicks, C., Hlavac, V., Keller, V., Rosell, C., Sangwine, T., Torslov, N., Wandall, B. M. 2003: COST 341 habitat fragmentation due to transportation infrastructure. Wildlife and traffic: a European handbook for identifying conflicts and designing solutions. Brussels: European Cooperation in the Field of Scientific and Technical Research, p. 172.
Keller, I., Largiad`er, C. R. 2003: Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proceedings of the Royal Society of London Series B, 270: 417–423. DOI: https://doi.org/10.1098/rspb.2002.2247
Kusak, J., Huber, D., Gomerčić, T., Schwaderer, G., Gužvica, G. 2009: The permeability of highway in Gorski kotar (Croatia) for large mammals. European Journal of Wildlife Research, 55(1): 7–21. DOI: https://doi.org/10.1007/s10344-008-0208-5
McGuire, T., Morrall, J. 2000: Strategic highway improvements to minimize environmental impacts within the Canadian Rocky Mountain National Parks. Canadian Journal of Civil Engineering, 27(3): 523–532. DOI: https://doi.org/10.1139/l99-096
Meijer, J. R., Huijbregts, M. A., Schotten, K. C. G. J., Schipper, A. M. 2018: Global patterns of current and future road infrastructure, Environmental Research Letters, 13(6): 064006 DOI: https://doi.org/10.1088/1748-9326/aabd42
Nagy, E., Benedek, I., Zsolnai, A., Halász, T., Csivincsik, Á., Ács, V., Nagy, G., Tari, T. 2021: Habitat Characteristics as Potential Drivers of the Angiostrongylus daskalovi Infection in European Badger (Meles meles) Populations. Pathogens, 10(6): 715. DOI: https://doi.org/10.3390/pathogens10060715
Náhlik, A., Farkas, A., Tari, T. 2022: First hungarian GPS telemetry results on mouflon home-range evaulation and habitat use. Abstracts of the 8th World Conference on Mountain Ungulates, p. 65.
Náhlik, A., Sándor, Gy., Tari, T., Király, G. 2009: Space use and activity patterns of red deer in a highly forested and in a patchy forest-agricultural habitat. Acta Silvatica Lignaria Hungarica, 5: 109–118.
Ng, S. J., Dole, J. W., Sauvajot, R. M., Riley, S. P. D., Valone, T.J. 2004: Use of highway undercrossings by wildlife in southern California. Biological Conservation, 115: 499–507. DOI: https://doi.org/10.1016/S0006-3207(03)00166-6
Percoco, M. 2016: Highways, local economic structure and urban development. Journal of Economic Geography, 16(5): 1035–1054. DOI: https://doi.org/10.1093/jeg/lbv031
QGIS Development Team. 2023: QGIS Geographic Information System. Open Source Geospatial Foundation Project.
Reed, R. A., Johnson-Barnard, J., Baker, W. L. 1996: Contribution of roads to forest fragmentation in the rocky mountains. Conservation Biology, 10: 1098–1106. DOI: https://www.jstor.org/stable/2387146
Schmidt, G. M., Lewison, R.L., Swarts, H. M. 2021: Pairing long-term population monitoring and wild-life crossing structure interaction data to evaluate road mitigation effectiveness. Biological Conservation, 257: 109085 DOI: https://doi.org/10.1016/j.biocon.2021.109085
Seabrook, W., Dettmann, E. B. 1996: Roads as activity corridors for cane toads in Australia. Journal of Wildlife Management, 60: 363–368. DOI: https://doi.org/10.2307/3802236
Serieys, L. E. K., Lea, A., Pollinger, J. P., Riley, S. P. D., Wayne, R. K. 2015: Disease and freeways drive genetic change in urban bobcat populations. Evolutionary Applications, 8: 75–92. DOI: https://doi.org/10.1111/eva.12226
Sołowczuk, A. 2020: Effect of Landscape Elements and Structures on the Acoustic Environment on Wildlife Overpasses Located in Rural Areas. Sustainability, 12(19): 7866 DOI: https://doi.org/10.3390/su12197866
Tari T., Reinhoffer I. 2023: Közúti műtárgyak szerepe az autópályák átjárhatóságában szőrmés ragadozófajok esetében. Magyar Apróvad Közlemények, 15: 1–9. DOI: https://doi.org/10.17243/mavk.2023.001
Tari T., Sándor Gy., Heffentrager G., Pócza G., Náhlik A. 2014: A vaddisznó területhasználata és aktivitása egy síkvidéki élőhelyen In: Lipák, L. (szerk.): Alföldi Erdőkért Egyesület Kutatói Nap XXII: Tudományos eredmények a gyakorlatban, p. 29–36.
Tóth B., Bleier N., Schally G., Lehoczki R., Csányi S. 2014: Otthonterület-becslési módszerek összehasonlítása az őz (Capreolus capreolus) területhasználatának elemzésében. Vadbiológia, 16: 51–62.
van der Ree, R., van der Grift, E. A. 2015: Recreational co-use of wildlife crossing structures. In: van der Ree, R., Smith, D.J., Grilo, C. (Eds.): Handbook of Road Ecology. John Wiley & Sons, Oxford, p. 184–189.
Ważna, A, Kaźmierczak, A, Cichocki, J, Bojarski, J, Gabryś G 2020: Use of underpasses by animals on a fenced expressway in a suburban area in western Poland. Nature Conservation, 39: 1–18. DOI: https://doi.org/10.3897/natureconservation.39.33967
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2023 Tari Tamás, Takács Attila
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).