Decomposition of salix and populus leaves in the area of Lake Balaton and Kis-Balaton Wetland

Szerzők

Kulcsszavak:

avar lebontás, fűz, nyár

Absztrakt

A vízbe kerülő avar bomlása nagymértékben meghatározza az anyagforgalmi folyamatok alakulását, így annak vizsgálata kiemelt fontosságú.  Kísérletünkben célul tűztük ki meghatározni fűz és nyár avar lebontási ütemét egy téli és egy nyári időszakban, makrogerinctelen szervezetek jelenlétében és azok hiányában, a Balaton és a Kis-Balaton területén. Ehhez a szakirodalomban is alkalmazott avarzsákos módszert alkalmaztuk, kis és nagy lyukbőségű zsákokkal. Meghatároztuk a bomlási ütemét, illetve a víz kémiai tulajdonságait (pH, vezetőképesség, NH4+, NO3-, SO42-, PO43-, Cl-). A nyári időszakban az avar bomlása lényegesen gyorsabb ütemben történt, mint télen. A két víztest esetében elmondható, hogy az avar gyorsabban bomlott a Balatonban, mint a Kis-Balatonban. A vízkémiai változók tekintetében megállapítható, hogy nincs szignifikáns különbség sem a víztestek, sem a mintavételi helyek között.

Információk a szerzőről

  • Kucserka Tamás, University of Pannonia, Department of Meteorology and Water Management, Keszthely, 7. Festetics Str. H-8360 Hungary

    levelezőszerző
    kucserkatamas@gmail.com 

Hivatkozások

Abelho, M. 2008. Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream. International Review of Hydrobiology. 93 (3) 358–371. https://doi.org/10.1002/iroh.200711019

Bärlocher, F. 2005. Leaf mass loss estimated by litter bag technique. In Graça, M. A. S., Bärlocher, F., Gessner, M. O. (eds) (2005) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, The Netherlands. 37–42. https://doi.org/10.1007/1-4020-3466-0_6

Boulton, A. J., Boon, P. I. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Australian Journal of Marine and Freshwater Research. 42 (1) 1–43. https://doi.org/10.1071/MF9910001

Brock, T. C. M., DeLyon, M. J. H., Van Laar, E. M. J. M., Van Loon, E. M. M. 1985. Field studies on the breakdown of Nuphar lutea (L.) SM. (Nymphaeaceae), and a comparison of three mathematical models for organic weight loss. Aquatic Botany. 21 (1) 1–22. https://doi.org/10.1016/0304-3770(85)90091-9

Danell, K., Sjoberg, K. 1979. Decomposition of Carex and Equisetum in northern swedish lake: dry weight loss and colonization by macroinvertebrates. Journal of Ecology. 67 (1) 191–200. https://doi.org/10.2307/2259344

Duarte, S., Pascoal, C., Cassio, F., Bärlocher, F. 2006. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oceanologia. 147 (4) 658–666. https://doi.org/10.1007/s00442-005-0300-4

Faye, L. M., Beth, R. L., Ormerod, S. J. 2006. The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia. 571 (1) 373–381. https://doi.org/10.1007/s10750-006-0269-y

Fisher, S. G., Chauvet, E. 1993. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs. 43 (4) 421–439. https://doi.org/10.2307/1942301

Frankland, J. C. 1998. Fungal succession-unravelling the unpredictable. Mycological Research. 102 (1) 1–15. https://doi.org/10.1017/S0953756297005364

Fujisaka, S., Bell, W., Thomas, N., Hurtado, N. L., Crawford, E. 1996. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agriculture, Ecosystems & Environment. 59 (1–2) 115–130. https://doi.org/10.1016/0167-8809(96)01015-8

Gessner, M. O., Chauvet, E., Dobson, M. 1999. A perspective on leaf litter breakdown in streams. Oikos. 85 (2) 277–384. https://doi.org/10.2307/3546505

Gessner, M. O. 2005. Ergosterol as a measure of fungal biomass. In: Graça, M. A. S., Bärlocher, F., Gessner, M. O. eds. Methods to Study Litter Decomposition: A Practical Guide. Springer, Berlin. p.189–195. https://doi.org/10.1007/1-4020-3466-0_25

Gessner, M. O. 1991. Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology. 26 (3) 387–398. https://doi.org/10.1111/j.1365-2427.1991.tb01406.x

Graça, M. A. S. 1993. Patterns and processes in detritus based stream systems. Limnologica. 23. 107–114.

Graça, M. A. S. 2001. The role of invertebrates on leaf litter decomposition in streams-a review. International Review of Hydrobiology. 86 (4–5) 383–393. https://doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D

Kominoski, J. S., Pringle, C. M., Ball, B. A., Bradford, M. A., Coleman, D. C., Hall, D. B., Hunter, M. D. 2007. Nonadditive effects of leaf-litter species diversity on breakdown dynamics in a detritus-based stream. Ecology. 88 (5) 1167–1176. https://doi.org/10.1890/06-0674

Kovács, Cs., Kahlert, M., Padisák, J. 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish steams. Journal of Applied Phycology. 18 (2) 105–117. https://doi.org/10.1007/s10811-006-9080-4

Markus, H., Gessner, M. O. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology. 90 (6) 1641–1649. https://doi.org/10.1890/08-1597.1

Melillo, J. M., Naiman, R. J., Aber, J. D., Linkins, A. E. 1984. Factors controlling mass loss and nitrogen dynamics on plant litter decaying in northern streams. Bulletin of Marine Science. 35. 342–356.

Neely, R. K. 1994. Evidence for positive interactions between epiphytic algae and heterotrophic decomposers during the decomposition of Typha latifolia. Archiv für Hydrobiologie. 129 (4) 443–457. https://doi.org/10.1127/archiv-hydrobiol/129/1994/443

Pérez-Corona, M. E., Pérez Hernández, M. C., Bermúdez de Castro, F. 2006. Decomposition of alder, ash, and poplar litter in a mediterranean riverine area. Universidad Complutense de Madrid, Madrid, Spain

Petersen, R. C., Cummins, K. W. 1974. Leaf processing in woodland stream. Freshwater Biology. 4 (4) 343–368. https://doi.org/10.1111/j.1365-2427.1974.tb00103.x

Pozo, J. 1993. Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain). I. Chemical changes. Archiv für Hydrobiologie. 127 (3) 299–317. https://doi.org/10.1127/archiv-hydrobiol/127/1993/299

Prokhorov, V. P., Bodyagin, V. V. 2007. The ecology of aero-aquatic hyphomycetes. Vestnik Moskovskogo Universiteta. Biologiya. 62 (1) 15–20. https://doi.org/10.3103/S009639250701004X

Schädler, M., Brandl, R. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology and Biochemistry. 37 (2) 329–337. https://doi.org/10.1016/j.soilbio.2004.07.042

Suberkropp, K. 1998. Microorganisms and organic matter decomposition. In: Naiman, R. J., Bilby, R. E. eds. River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer, New York. 120–143. https://doi.org/10.1007/978-1-4612-1652-0_6

Wrubleski, D. A., Murkin, H. R., van der Valk, A. G. Nelson, J. W. 1997. Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh. Aquatic Botany. 58 (2) 121–134. https://doi.org/10.1016/S0304-3770(97)00016-8

Letöltések

Megjelent

2018-12-07

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Kucserka, T., Simon, B., & Anda, A. (2018). Decomposition of salix and populus leaves in the area of Lake Balaton and Kis-Balaton Wetland . GEORGIKON FOR AGRICULTURE, 24(3), 20-31. https://journal.uni-mate.hu/index.php/gfa/article/view/6341

Hasonló cikkek

1-10 a 28-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei

1 2 3 > >>