Comparison of the Effectiveness of Artificial Intelligence-Based Plant Recognition Applications

Authors

Keywords:

machine vision, artificial intelligence, plant recognition, mobile application

Abstract

With the development of technology, more and more artificial intelligence-based plant recognition software is being developed, which can make it easier to determine the plants living in our environment. The aim of our work was to compare the effectiveness of different plant recognition software. We chose Kísérleti lake and its immediate surroundings in the area of Stage I (Hídvégi lake) in Kis-Balaton in the year 2024. In connection with machine vision, the task of the device was to detect the plant, separate it from the plants representing the background, and based on its individual characteristics, make a decision about exactly what kind of plant it is. During the research, we compared six different plant recognition applications by analyzing 15 images of plant species typical of the area. The plants appeared as a simple tool in the experiment, with which the comparison of applications could be realized. The main aspect of their selection was that the input data set should contain simple plants with almost the same color as the background, as well as plants with unique, colorful inflorescences. We checked the accuracy and compared the results with the values indicated by the developers of the software. Based on the results, we determined which application is recommended for the accurate recognition of plants in this region.

Author Biography

  • Kristóf Kozma-Bognár, Magyar Agrár- és Élettudományi Egyetem, Festetics Doktori Iskola

    correspondence
    kristof025@gmail.com

References

Badeka, E., Kalabokas, T., Tziridis, K., Nicolaou, A., Vrochidou, E., Mavridou, E., Papakostas, G.A., Pachidis, T. 2019. Grapes Visual Segmentation for Harvesting Robots Using Local Texture Descriptors. International Conference on Computer Vision Systems. Springer: Thessaloniki, Greece, 98–109. https://doi.org/10.1007/978-3-030-34995-0_9

Chassignol, M., Khoroshavin, A., Klimova, A., Bilyatdinova, A. 2018. Artificial Intelligence trends ineducation: A narrative overview. Procedia Computer Science, 136, 16–24. https://doi.org/10.1016/j.procs.2018.08.233

Dietterich, T.G. 1997. Machine-Learning Research. AI Magazine, 18 (4), 97. https://doi.org/10.1609/AIMAG.V18I4.1324

Doris, L., Potter, K. (2024): The Role of Deep Learning in Computer Vision. Machine Learning.

Han, B.-G., Lee, J. T., Lim, K.-T., Choi, D.-H. 2020. License Plate Image Generation using Generative Adversarial Networks for End-To-End License Plate Character Recognition from a Small Set of Real Images. Applied Sciences 10, 2780. https://doi.org/10.3390/app10082780

Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., Pasupuleti, V. R. 2020. A critical review oncomputer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2, 100033. https://doi.org/10.1016/j.jafr.2020.100033

Kozma-Bognár, K., Szeglet, P., Berke, J., Kozma-Bognár, V. 2021. Térinformatikai adatbázis fejlesztésének lehetőségei a Kis-Balaton mintaterületén. XXVII. Multimédia az oktatásban online nemzetközi konferencia kiadvány. 181–185.

Kozma-Bognár, V., Magyary, V., Berke, J. 2016. Ultranagy felbontású légifelvételek multitemporális elemzése. Debreceni Egyetem Térinformatikai Konferencia és Szakkiállítás. 7, 271–277. https://doi.org/10.13140/RG.2.1.3711.7044

Lehoczky, M., Siki, Z. 2020. Fotogrammetriai feldolgozószoftverek. Geodézia és Kartográfia. 72 (2), 23–27. http://doi.org./10.30921/GK.72.2020.2.4

Li K., Hopkins A. K., Bau D., Viégas F., Pfister H., Wattenberg M. 2022. Emergent world representations: exploring a sequence model trained on asynthetic task. https://doi.org/10.48550/arXiv.2210.13382

Tian, H., Wang, T., Liu, Y., Qiao, X., Li, Y. 2020. Computer vision technology in agricultural automation—A review. Information Processing in Agriculture 7, 1–19. https://doi.org/10.1016/j.inpa.2019.09.006

Minsky, M. 1961. Steps Toward Artificial Intelligence. Proceedings of the IRE, 49 (1), 8–30. https://doi.org/10.1109/JRPROC.1961.287775

Prasad G.A., Kumar, A. V. S., Sharma, P., Irawati, I. D., Chandrashekar D. V., Musirin, I. B., Abdullah, H. M .A., Rao, L. M. 2023. Artificial Intelligence in Computer Science: An Overview of Current Trends and Future Directions. In S. Rajest, B. Singh, A. Obaid, R. Regin, & K. Chinnusamy (Eds.), Advances in Artificial and Human Intelligence in the Modern Era, IGI Global, 43–60. https://doi.org/10.4018/979-8-3693-1301-5.ch002

Sabzi, S., Abbaspour-Gilandeh, Y., Javadikia, H. 2017. Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosystems Engineering 161, 157–173. https://doi.org/10.1016/j.biosystemseng.2017.06.021

Zhang, H., Cisse, M., Dauphin, Y. N., Lopez-Paz, D. 2018. mixup: Beyond Empirical Risk Minimization. International Conference on Learning Representations, Vancouver, BC, Canada, 1–13. https://doi.org/10.48550/arXiv.1710.09412

Zhang, W., Liu, D., Wang, C., Liu, R., Wang, D., Yu, L., Wen, S. 2022. An Improved Python-Based Image Processing Algorithm for Flotation Foam Analysis. Minerals 12, 1126. https://doi.org/10.3390/min12091126

Published

2024-06-28