Examination of the decomposition of willow, poplar and mixed leaf litter with litterbag technique
Keywords:
decomposition, willow, poplar, litterbag, class ,,A” evaporation panAbstract
Leaf litter decomposition is one of the most important ecological material cycle processes. For saprophytic water organisms, allochtonous plant parts (especially leaves) represent the main source of energy and nutrients. As a consequence of their shredding activity, the organic nutrients of detritus can return into soil, and can be uptaken by plants again. In our study, decomposition rates of willow (Salix sp.), poplar (Populus sp.) and mixed leaf litter were monitorized, with litterbag method in a class ,,A” evaporation pan. Litterbags were used with two different mesh sizes. With the 500 μm mesh-sized bag we were able to examine decomposition with the exclusion of macroinvertebrates, and with the 3 mm mesh-sized bag we got information in the presence of them. The study took place between 15. June 2019. and 24. October 2019. Based on our results, we did not notice any remarkable differences between the decomposition of willow, poplar and mixed leaf litter. All of them fell into ,,medium” decomposition category. Furthermore, we did not measure notable differences between the two different devices. During each and every sampling, water samples were also taken, and their pH, conductivity, NH4+, PO43-, SO42- and Cl--ion content were determined. There weren’t any considerable changes in the quality of water, during the experimental period. The main aim of the study was to examine the process of decomposition and the changes of water parameters, furthermore, to compare the evaporation of the modified experimental pan (sediment, decomposing leaf litter), with the standard class ,,A” evaporation pan’s (control pan). From that, it was able to determine the effect of decomposing leaf litter on evaporation. From the results of this experiment, we found that, the presence of sludge, and decomposing leaf litter, placed in the modified pan, increased the rate of evaporation in 2019.
References
Abelho, M. 2001. From Litterfall to Breakdown in Streams: A Review. The Scientific World Journal. 1. 656–680. https://doi.org/10.1100/tsw.2001.103
Allan, J.D., Castillo, M.M. 2007. Stream Ecology: Structure and Function of Running Waters. Second Edition. Springer. 135–46.
Ágoston-Szabó, E., Schöll, K., Kiss, A., Berczik, Á. Dinka, M. 2014. Decomposition of Willow Leaf Litter in an Oxbow Lake of the Danube River at Gemenc, Hungary. Acta Zoologica Bulgarica. 7. 197–202.
Anda, A. Simon, B., Soós, G., Teixeira, da Silva J.A., Kucserka, T. 2016: Effect of submerged, freshwater aquatic macrophytes and littoral sediments on pan evaporation in the Lake Balaton region, Hungary. J. Hydrol., 542, 615–626. https://doi.org/10.1016/j.jhydrol.2016.09.034
Anda, A. Simon, B., Soós, G., Menyhárt, L., Teixeira, da Silva J.A., Kucserka, T. 2018: Extending Class A pan evaporation for a shallow lake to simulate the impact of littoral sediment and submerged macrophytes: a case study for Keszthely Bay (Lake Balaton, Hungary). Agr. Forest. Meteorol., 250-251, 277–289. https://doi.org/10.1016/j.agrformet.2018.01.001
Bagi, I., Bartha, D., Bartha, S., Borhidi, A. et al. 1996. A magyarországi élőhelyek leírása és határozókönyve - A nemzeti élőhely osztályozási rendszer. Természettudományi Múzeum, Budapest. 147–148.
Bärlocher, F. 2005. Leaf mass loss estimated by litter bag technique. Graça, M.A.S., Bärlocher F., Gessner, M.O. 2005. Methods to study litter decomposition: a practical guide. Springer, Dordrecht, The Netherlands. 37–42. https://doi.org/10.1007/1-4020-3466-0_6
Brouwer, C., Heibloem, M. 1986. Irrigation water management: Irrigation water needs. Training manual no. 3., FAO.
Chapman, S.K., Koch, G.W. 2007. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil. 299. 153–162. https://doi.org/10.1007/s11104-007-9372-8
Chauvet, E. 1987. Changes in chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia. 148. 35–44. https://doi.org/10.1007/BF00018164
Gifford, R. M., Farquhar, G. D., Nicholls, N., Roderick, M. L. 2005. Workshop summary on pan evaporation: an example of the detection and attribution of climate change variables. In: Pan evaporation: an example of the detection and attribution of trends in climate variables. Austr. Academy of Sci., 4–19.
Goh, T. K., Hyde, K. D. 1996. Biodiversity of freshwater fungi. Journal of Industrial Microbiology & Biotechnology. 17(5-6). 328–345. https://doi.org/10.1007/BF01574764
Gombos, B. 2011. Hidrológia, hidraulika, Szent István Egyetem.
Hasanuzzaman, M. D., Hossain, M. 2014. Nutrient Leaching from Leaf Litter of Cropland Agroforest Tree Species of Bangladesh. Journal of Forest and Environmental Science. 30. 208–217. https://doi.org/10.7747/JFS.2014.30.2.208
Hubai, K. E., Padisák, J. 2017. Az avarlebomlás folyamatainak karakterisztikái dunántúli kisvízfolyásokban, Kémiai és Környezettudomány Doktori Iskola, Veszprém. pp. 10–104.
Liu, C., Sun, X. 2013. A Review of Ecological Stoichiometry: Basic Knowledge and Advances. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.05519-6
Mátyás, Cs. 1997. Erdészeti ökológia. Mezőgazda Kiadó, Budapest. pp. 45–65.
Markus, H., Gessner, M.O. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology. 90. 1641–1649. https://doi.org/10.1890/08-1597.1
Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates, Ecology. 59. 465–472. https://doi.org/10.2307/1936576
Moorhead, D., Reynolds, J. 1992. Modeling the contributions of decomposer fungi in nutrient cycling. In: Carroll G. and Wicklow D., (eds) The Fungal Community Marcel D., New York, USA 691–714.
Robertson, G. P., Coleman, D. C., Bledsoe, C. S., Sollins, P. 1999. Standard Soil Methods for Long-term Ecological Research. New York, Oxford, Oxford University Press. 79–84. https://doi.org/10.1093/oso/9780195120837.001.0001
Santonja, M., Pellan, L., Piscart, C. 2018. Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. Ecology and Evolution. 8(5) 2542–2553. https://doi.org/10.1002/ece3.3790
Sigee, D. C. 2005. Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the freshwater environment. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England. 1–46. https://doi.org/10.1002/0470011254
Tripole, S., Vallania, E. A., Corigliano, M. 2008. Benthic macroinvertebrate tolerance to water acidity in the Granderiver sub-basin (San Luis, Argentina), Limnetica. 27(1) 29–38. https://doi.org/10.23818/limn.27.03
Ward, J. V., Stanford, J. A. 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flowregulation. Regulated Rivers: Research & Management. 11 105–119. https://doi.org/10.1002/rrr.3450110109
Webster, J. R., Benfield, E. 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecological Systems. 17. 567–594. https://doi.org/10.1146/annurev.es.17.110186.003031
Wurzbacher, C., Wannicke, N., Grimmett, I. J., Bärlocher F. 2016. Effects of FPOM size and quality on aquatic heterotrophic bacteria, Limnologica. 59. 109–15. https://doi.org/10.1016/j.limno.2016.04.001
Zhai, J., Cong, L., Yan, G., Wu, Y., Liu, J., Wang, Y., Zhang, Z., Zhang, M. 2019. Influence of fungi and bag mesh size on litter decomposition and water quality. Environmental Science and Pollution Research, Springer. 26(18) 18304–18315. https://doi.org/10.1007/s11356-019-04988-4
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Tóth Ariel, Simon Brigitta, Anda Angéla, Kucserka Tamás
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).