Evolution of decomposition coefficients for different leaf litters
Keywords:
willow, poplar, reed, litter mixture, decomposition coefficientAbstract
Temperature is one of the main abiotic drivers of decomposition processes in water. In the international literature, the values measured under different environmental conditions can be compared with the value of the traditional exponential decay coefficient (k, day-1). However, this indicator does not take temperature into account, it only calculates the remaining mass and the elapsed time. The water temperature-based daily mean breakdown rate is suitable for taking water temperature into account (ktemp, day-1). During the research, 3 types of litter (willow, Salix sp.; poplar, Populus sp.; reed, Phragmites australis) and their mixture were examined using the litterbag method. The experiment was set up between June 10 and September 2, 2022. Based on our results, it can be said that ktemp values are higher than k values. The differences between the varieties and their mixtures became more visible in the case of ktemp than in the case of k. With the exception of reed, the litter mixtures showed a higher deviation than the litter samples containing only one type of leaf litter when comparing the values of k and ktemp.
References
Abelho, M. 2001. From litterfall to breakdown in streams: a review. The Scientific World Journal. 1 656–680. https://doi.org/10.1100/tsw.2001.103
Anda, A., Simon, Sz., Simon-Gáspár, B. 2023. Impacts of wintertime meteorological variables on decomposition of Phragmites australis and Solidago canadensis in the Balaton System. Theoretical and Applied Climatology. 151 1963–1979. https://doi.org/10.1007/s00704-023-04370-y
Asaeda, T., Nam, L.H. 2002. Effects of rhizome age on the decomposition rate of Phragmites australis rhizomes. Hydrobiologia. 485 205–208. https://doi.org/10.1023/A:1021314203532
Bärlocher, F. 2005. Leaf Mass Loss Estimated by Litter Bag Technique. In: Graça M.A.S., Bärlocher F., Gessner M.O., Eds., Methods to Study Litter Decomposition, a Practical Guide, Springer, Dordrecht, pp. 37–42. https://doi.org/10.1007/1-4020-3466-0_6
Bärlocher, F; Gessner, M.O.; Graca, M. A. S. 2020. Leaf mass loss estimated by the litter bag technique. Methods to study litter decomposition. A Practical Guide (2nd ed.) SpringerNature Switzerland AG., Part 1., pp. 43–51. https://doi.org/10.1007/978-3-030-30515-4_6
Boyero, L.; Pearson, R. G.; Gessner, M. O.; Barmuta, L. A. 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters. 14 (3) 289–94. https://doi.org/10.1111/j.1461-0248.2010.01578.x
Brown, J. H.; Gillooly, J. F.; Allen, A. P. 2004. Toward a metabolic theory of ecology. Ecology. 85 (7) 1771–1789. https://doi.org/10.1890/03-9000
Chen, Y., Ma, S., Jiang, H., Yangzom, D., Cheng, G., Lu, X. 2019. Decomposition time, chemical traits and climatic factors determine litter-mixing effects of decomposition in an alpine steppe ecosystem in Northern Tibet. Plant Soil. 459 23–35. https://doi.org/10.1007/s11104-019-04131-9
Chergui, H.; Pattee, E. 1990. The influence of season on the breakdown of submerged leaves. Arch. Hydrobiol. 120 (1) 1–12. https://doi.org/10.1127/archiv-hydrobiol/120/1990/1
Dobson, M.; Frid, C. 1998. Ecology of Aquatic Systems. Longman, Essex
Ferreira, V.; Chauvet E. 2011. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biol. 17 (1) 551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x
Mátyás, Cs. 1997. Erdészeti ökológia. Mezőgazda Kiadó, Budapest.
Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology. 59 (3) 465–472. https://doi.org/10.2307/1936576
Nakajima, T.; Asaeda, T.; Fujino, T.; Nanda, A. 2006. Leaf Litter Decomposition in Aquatic and Terrestrial Realms of a Second-Order Forested Stream System. Journal of Freshwater Ecology. 21 (2) 259–263. http://dx.doi.org/10.1080/02705060.2006.9664994
Petersen, R. C.; Cummins, K. W. 1974. Leaf processing in a woodland stream. Freshwater Biology. 4 (4) 343–368. https://doi.org/10.1111/j.1365-2427.1974.tb00103.x
Sokolova, I. M.; Lannig, G. 2008. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Climate Research. 37 181–201. http://dx.doi.org/10.3354/cr00764
Wallace, J. B.; Whiles, M. R.; Eggert, S.; Cuffney, T. F.; Lugthart, G. J.; Chung, K. 1995. Long-term dynamics of coarse particulate organic matter in three Appalachian Mountain Streams. Journal of the North American Benthological Society. 14 (2) 217–232. http://dx.doi.org/10.2307/1467775
Webster, J. R.; Benfield, E. F. 1986. Vascular plant breakdown in freshwater systems. Annual Review of Ecology and Systematics. 17 567–594. http://dx.doi.org/10.1146/annurev.es.17.110186.003031
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Brigitta Simon-Gáspár, Ariel Tóth, Szabina Simon, Gábor Soós, Angéla Anda
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).