Some climatic aspects of apple growing
Keywords:
Malus domestica, global climate changeAbstract
Malus domestica Borkh is the most widely grown fruit in the temperate climate (worldwide only bananas and citrus fruits precede it). The regional impact of global warming has already been manifested in extreme weather events today. Signs of climate change are also reflected in the intensity and frequency of temperature and precipitation extremes. The number of heat waves and hot days will increase throughout Europe, including Hungary, which will be accompanied by the rarer extremes of cold and frosty days, which - supported by previous researches - may result in changes in apple production. The behavior of plants is influenced by various ecological processes, of which weather factors and climatic conditions are of great importance. Individual weather conditions, especially temperature, affect all aspects of apple growing.
References
Anda, A., Kocsis, T., 2010. Agrometeorológiai és klimatológiai alapismeretek. Budapest: Mezőgazda Kiadó. pp. 176–188.
Avery, D. J. 1975. Effects of climatic factors on the photosynthetic efficiency of apple leaves. In: Climeta and Orchard, Commonwealth Agricultural Bureaux, pp. 25–31.
Ban, Y., Kondo, S., Ubi, B.E., Honda, C., Bessho, H., Moriguchi, T. 2009. UDP‐sugar biosynthetic pathway: contribution to cyanidin 3‐galactoside biosynthesis in apple skin. Planta. 230. 871–881. https://doi.org/10.1007/s00425-009-0993-4
Bergh, O. 1990. Effect of temperature during the first 42 days following full bloom on apple fruit growth and size at harvest. South African Journal of Plant and Soil. 7. 11–18. https://doi.org/10.1080/02571862.1990.10634530
Brooks, C., Fisher, D.F. 1926. Some high-temperature effects in apples: contrasts in the two sides of an apple. Journal of Agricultural Research. 32(1). 1–23.
Caprio, J. M. and Quamme, H. A., 1999. Weather conditions associated with apple production in the Okanagan Valley of British Columbia. Canadian Journal of Plant Science. 79. 129–137. https://doi.org/10.4141/P98-028
Felicetti, D. A., Schrader, L. E., 2009. Changes in pigment concentrations associated with sunburn browning of five apple cultivars. II. Phenolics. Plant Science. 176(1). 84–89. https://doi.org/10.1016/j.plantsci.2008.09.010
Ferree, D. C., Warrington, I. J., 2003. Apples: Botany, Production and Uses. Wallingford, United Kingdom: CABI Publishing. https://doi.org/10.1079/9780851995922.0000
Flore, J. A. and Howell, G. S., 1987. Environmental and physiological factors that influence cold hardiness. International Conference on Agrometeorology. 139–150.
Ford, E. M. 1979. Effect of post-blossom environmental conditions of fruit composition and quality of apple. Communications in Soil Science and Plant Analysis. 10. 337–348. https://doi.org/10.1080/00103627909366899
Grab, S., Craparo, A. 2011. Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973-2009. Agricultural and Forest Meteorology. 151. 406–413. https://doi.org/10.1016/j.agrformet.2010.11.001
Hernandez, O., Torres, C. A., Moya-León, M. A., Opazo, M. C., Razmilic, I., 2014. Roles of the ascorbate-glutathione cycle, pigments and phenolics in postharvest 'sunscald' development on 'Granny Smith' apples (Malus domestica Borkh.). Postharvest Biology and Technology. 87. 79–87. https://doi.org/10.1016/j.postharvbio.2013.08.003
Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., White, L. L. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Jones, P. D., M. New, D. E., Parker, S., Martin, I. G. Rigor. 1999. Surface air temperature and its changes over the past 150 years. Reviews of Geophysics. 37. 173–199. https://doi.org/10.1029/1999RG900002
Katz, R. W., B. G. Brown. 1992. Extreme events in a changing climate: variability is more important than averages. Climate Change. 21. 289–302. https://doi.org/10.1007/BF00139728
Lakatos, L. 2004. Több szintű mezoklíma vizsgálatok alma ültetvényekben. Földtudományi Tanulmányok, Debrecen, Tiszteletkötet Justyék János 75. születésnapjára. pp. 95–104.
Legave, J. M., Blanke M., Christen D., Giovannini D., Mathieu V., Oger R. 2013. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. International Journal of Biometeorology. 57. 317–331. https://doi.org/10.1007/s00484-012-0551-9
Lenti, I., 2011. Kertészet. Nyíregyháza: Nyíregyházi Főiskola.
Lin-Wang, K., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R., Hellens, R. P., Chagnè, D., Rowan, D. D., Troggio, M., Iglesias, I., Allan, A. C. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ. 34(7). 1176–1190. https://doi.org/10.1111/j.1365-3040.2011.02316.x
Ma, F., Cheng, L. 2004. Exposure of the shaded side of apple fruit to full sun leads to upregulation of both the xanthophyll cycle and the ascorbate-glutathione cycle. Plant Science. 166. 1479–1486. https://doi.org/10.1016/j.plantsci.2004.01.024
Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E. 2009. Climate change and food safety: An emerging issue with special focus on Europe. Food and Chemical Toxicology. 47(5). 1009–1021. https://doi.org/10.1016/j.fct.2009.02.005
Morgan, J., Richards, A., 1993. The Book of Apples. Ebury Press: London. https://doi.org/10.1038/366641b0
Nemani, R. R., White, M. A., Cayan, D. R., Jones, G. V., Running, S. V. 2001. Asymmetric warming over coastal California and its impact on the premium wine industry. Climate Research. 19. 25–34. https://doi.org/10.3354/cr019025
Olesen, J. E., M. Trnkab, K. C. Kersebaumc, A. O. Skjelvågd, B. Seguine, P. Peltonen-Sainiof, F. Rossig, J. Kozyrah and F. Micalei. 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy. 34. 96–112. https://doi.org/10.1016/j.eja.2010.11.003
Panel on Reconciling Temperature Observations 2000. Reconciling Observations of Global Temperature Change. Climate Research Committee, Board on Atmospheric Sciences and Climate, Commission on Geosciences, Environment, and Resources, National Research Council, National Academy Press, 104 pp.
Péczely, Gy. 1998. Éghajlattan. Nemzeti Tankönyvkiadó Rt., Budapest. pp. 258–284.
Poldervaart, G. 2004. Climatical change affects cultivar choice. Fruitteelt Den Haag. 94(14). 16.
Racskó, J., Szabó, Z., Nyéki, J., 2005. Importance of supraoptimal radiance supply and sunburn effects on apple fruit quality. Acta Biologica Szegediensis. 49(2). 111–114.
Sandor, F. 2008. Apple Production. Perennial Crop Support Series Jalalabad, Afghanistan. Manual produced by Roots of Peace, USAID, Afghanistan, California. Alternative Livelihood Program-Eastern Region ALP/E. Publication No. 2008-004-AFG
Schrader, L., Zhang, J., Sun, J., 2003. Environmental stresses that cause sunburn of apple. Acta Horticulturae. 618. 397–405. https://doi.org/10.17660/ActaHortic.2003.618.47
Schrader, L. E., Zhang, J., Duplaga, W. K., 2001. Two types of sunburn in apple caused by high fruit surface (peel) temperature. Plant Health Progress Journal. 2(1). 3. https://doi.org/10.1094/PHP-2001-1004-01-RS
Slingo, M. 2009. Effect of climate change on apple production in New Zealand. Ter. Ecosys. Interact. Global. Changes. 2. 673–687.
Soltész, M., 1997. Integrált gyümölcstermesztés. Budapest: Mezőgazda Kiadó.
Steyn, W., Holcroft, D., Wand, S., Jacobs, G. 2005. Red colour development and loss in pears. Acta Horticulturae. 671. 79–85. https://doi.org/10.17660/ActaHortic.2005.671.9
Sugiura, T., Sumida, H., Yokoyama, S., Ono, H. 2012. Overview of recent effects of global warming on agricultural production in Japan. Japan Agricultural Research Quarterly. 46. 7–13. https://doi.org/10.6090/jarq.46.7
Tóth, M. 1982. Új almafajták termesztési-, áruértéke és adaptációs lehetőségei. Kandidátusi értekezés és tézisek, Budapest.
Tóth, M., 2013. Magyarország kultúrflórája - Az alma. Budapest: Agroinform Kiadó.
Tromp, J. 1997. Maturity of apple cv. Elstar as affected by temperature during a six-week period following bloom. Journal of Horticultural Science and Biotechnology. 72. 811–819. https://doi.org/10.1080/14620316.1997.11515575
Tukey, L. D. 1959. Some effects of night temperature on the growth of McIntosh apples. II. Proceedings of the American Society for Horticultural Science. 75. 39–46.
Wünsche, J. N., Bowen, J., Ferguson, I., Woolf, A., McGhie, T., 2004. Sunburn on apples causes and control mechanisms. Acta Horticulturae. 636. 631–636. https://doi.org/10.17660/ActaHortic.2004.636.78
Zatykó, I., 1986. Különböző időszakokban bekövetkezett fagyok terméscsökkentő hatása az almánál. Gyümölcs-Inform. 86(3). 108–112.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Simon Szabina, Kucserka Tamás, Anda Angéla
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).