Decomposition of salix and populus leaves in the area of Lake Balaton and Kis-Balaton Wetland

Authors

Keywords:

leaf litter decomposition, Salix, Willow

Abstract

Decomposition of plant litter in water influences metabolic processes, so its investigation has a major priority. In our study the aim was to determine Salix and Poplar leaf mass loss in a winter and in a summer period in presence and deprivation of macroinvertebrates in the area of Lake Balaton and Kis-Balaton Wetland. As a common method in the literature, leaf litter bag technique was used with small and big mesh sizes. Decomposition rates and chemical parameters of the water (pH, conductivity, NH4+, NO3-, SO42-, PO43-, Cl-) were determined. In summer decomposition was much faster, than in winter. In respect of the two study sites, leaves decomposed faster in Lake Balaton, compared to Kis-Balaton Wetland. In respect of the water chemical variables there was no significant difference between the water bodies and the sampling sites, either. 

Author Biography

  • Tamás Kucserka, University of Pannonia, Department of Meteorology and Water Management, Keszthely, 7. Festetics Str. H-8360 Hungary

    corresponding author
    kucserkatamas@gmail.com 

References

Abelho, M. 2008. Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream. International Review of Hydrobiology. 93 (3) 358–371. https://doi.org/10.1002/iroh.200711019

Bärlocher, F. 2005. Leaf mass loss estimated by litter bag technique. In Graça, M. A. S., Bärlocher, F., Gessner, M. O. (eds) (2005) Methods to study litter decomposition: a practical guide. Springer, Dordrecht, The Netherlands. 37–42. https://doi.org/10.1007/1-4020-3466-0_6

Boulton, A. J., Boon, P. I. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Australian Journal of Marine and Freshwater Research. 42 (1) 1–43. https://doi.org/10.1071/MF9910001

Brock, T. C. M., DeLyon, M. J. H., Van Laar, E. M. J. M., Van Loon, E. M. M. 1985. Field studies on the breakdown of Nuphar lutea (L.) SM. (Nymphaeaceae), and a comparison of three mathematical models for organic weight loss. Aquatic Botany. 21 (1) 1–22. https://doi.org/10.1016/0304-3770(85)90091-9

Danell, K., Sjoberg, K. 1979. Decomposition of Carex and Equisetum in northern swedish lake: dry weight loss and colonization by macroinvertebrates. Journal of Ecology. 67 (1) 191–200. https://doi.org/10.2307/2259344

Duarte, S., Pascoal, C., Cassio, F., Bärlocher, F. 2006. Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oceanologia. 147 (4) 658–666. https://doi.org/10.1007/s00442-005-0300-4

Faye, L. M., Beth, R. L., Ormerod, S. J. 2006. The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia. 571 (1) 373–381. https://doi.org/10.1007/s10750-006-0269-y

Fisher, S. G., Chauvet, E. 1993. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs. 43 (4) 421–439. https://doi.org/10.2307/1942301

Frankland, J. C. 1998. Fungal succession-unravelling the unpredictable. Mycological Research. 102 (1) 1–15. https://doi.org/10.1017/S0953756297005364

Fujisaka, S., Bell, W., Thomas, N., Hurtado, N. L., Crawford, E. 1996. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agriculture, Ecosystems & Environment. 59 (1–2) 115–130. https://doi.org/10.1016/0167-8809(96)01015-8

Gessner, M. O., Chauvet, E., Dobson, M. 1999. A perspective on leaf litter breakdown in streams. Oikos. 85 (2) 277–384. https://doi.org/10.2307/3546505

Gessner, M. O. 2005. Ergosterol as a measure of fungal biomass. In: Graça, M. A. S., Bärlocher, F., Gessner, M. O. eds. Methods to Study Litter Decomposition: A Practical Guide. Springer, Berlin. p.189–195. https://doi.org/10.1007/1-4020-3466-0_25

Gessner, M. O. 1991. Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshwater Biology. 26 (3) 387–398. https://doi.org/10.1111/j.1365-2427.1991.tb01406.x

Graça, M. A. S. 1993. Patterns and processes in detritus based stream systems. Limnologica. 23. 107–114.

Graça, M. A. S. 2001. The role of invertebrates on leaf litter decomposition in streams-a review. International Review of Hydrobiology. 86 (4–5) 383–393. https://doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D

Kominoski, J. S., Pringle, C. M., Ball, B. A., Bradford, M. A., Coleman, D. C., Hall, D. B., Hunter, M. D. 2007. Nonadditive effects of leaf-litter species diversity on breakdown dynamics in a detritus-based stream. Ecology. 88 (5) 1167–1176. https://doi.org/10.1890/06-0674

Kovács, Cs., Kahlert, M., Padisák, J. 2006. Benthic diatom communities along pH and TP gradients in Hungarian and Swedish steams. Journal of Applied Phycology. 18 (2) 105–117. https://doi.org/10.1007/s10811-006-9080-4

Markus, H., Gessner, M. O. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology. 90 (6) 1641–1649. https://doi.org/10.1890/08-1597.1

Melillo, J. M., Naiman, R. J., Aber, J. D., Linkins, A. E. 1984. Factors controlling mass loss and nitrogen dynamics on plant litter decaying in northern streams. Bulletin of Marine Science. 35. 342–356.

Neely, R. K. 1994. Evidence for positive interactions between epiphytic algae and heterotrophic decomposers during the decomposition of Typha latifolia. Archiv für Hydrobiologie. 129 (4) 443–457. https://doi.org/10.1127/archiv-hydrobiol/129/1994/443

Pérez-Corona, M. E., Pérez Hernández, M. C., Bermúdez de Castro, F. 2006. Decomposition of alder, ash, and poplar litter in a mediterranean riverine area. Universidad Complutense de Madrid, Madrid, Spain

Petersen, R. C., Cummins, K. W. 1974. Leaf processing in woodland stream. Freshwater Biology. 4 (4) 343–368. https://doi.org/10.1111/j.1365-2427.1974.tb00103.x

Pozo, J. 1993. Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain). I. Chemical changes. Archiv für Hydrobiologie. 127 (3) 299–317. https://doi.org/10.1127/archiv-hydrobiol/127/1993/299

Prokhorov, V. P., Bodyagin, V. V. 2007. The ecology of aero-aquatic hyphomycetes. Vestnik Moskovskogo Universiteta. Biologiya. 62 (1) 15–20. https://doi.org/10.3103/S009639250701004X

Schädler, M., Brandl, R. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology and Biochemistry. 37 (2) 329–337. https://doi.org/10.1016/j.soilbio.2004.07.042

Suberkropp, K. 1998. Microorganisms and organic matter decomposition. In: Naiman, R. J., Bilby, R. E. eds. River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer, New York. 120–143. https://doi.org/10.1007/978-1-4612-1652-0_6

Wrubleski, D. A., Murkin, H. R., van der Valk, A. G. Nelson, J. W. 1997. Decomposition of emergent macrophyte roots and rhizomes in a northern prairie marsh. Aquatic Botany. 58 (2) 121–134. https://doi.org/10.1016/S0304-3770(97)00016-8

Downloads

Published

2018-12-07

Issue

Section

Articles

How to Cite

Kucserka, T., Simon, B., & Anda, A. (2018). Decomposition of salix and populus leaves in the area of Lake Balaton and Kis-Balaton Wetland . GEORGIKON FOR AGRICULTURE, 24(3), 20-31. https://journal.uni-mate.hu/index.php/gfa/article/view/6341

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.