A cink-oxid (ZnO) adagolás kiváltásának lehetőségei választott malacoknál

Szerzők

  • Albert Fruzsina Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Bodnár Ákos Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Pajor Ferenc Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Póti Péter Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Abayné Hamar Enikő Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Kovács-Weber Mária Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Posta Katalin Magyar Agrár- és Élettudományi Egyetem, Genetika és Biotechnológia Intézet, 2100 Gödöllő, Páter Károly utca 1.
  • Juhász Ákos Magyar Agrár- és Élettudományi Egyetem, Genetika és Biotechnológia Intézet, 2100 Gödöllő, Páter Károly utca 1.
  • Mayer Zoltán Magyar Agrár- és Élettudományi Egyetem, Genetika és Biotechnológia Intézet, 2100 Gödöllő, Páter Károly utca 1.
  • Hidas András Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Fazekas Natasa Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet
  • Egerszegi István Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet

DOI:

https://doi.org/10.17205/SZIE.AWETH.2021.1.001

Kulcsszavak:

sertés, választott malac, ZnO, cink-oxid kiváltás, sertéstakarmányozás

Absztrakt

A választásakor kialakuló stresszhelyzet jelentős hasmenést idézhet elő malacokban, mely igen nagy gazdasági veszteséggel járhat. A probléma kezelésére szokták használni takarmányba keverve a cink-oxidot, melynek azonban feltárhatósága igen nehéz, ezért jóval többet kell adagolni az állatok számára ahhoz, hogy hatékony mennyiségű cinkhez jussanak. Ennek azonban környezetkárosító hatása van.

Hosszú ideje a nagy dózisú ZnO használata volt az egyik módja a hasmenés okozta problémák kezelésének választott malacoknál. Annak ellenére, hogy a ZnO túlzott felhasználása jelentős környezetterhelést jelent, ezért a Committee for Medicinal Products for Veterinary Use (CVMP) által felterjesztett 2001/82/EC irányelv (EMEA/V/A/118) 35. cikkelye szerint az Európai Bizottság 2022-re elrendelte a ZnO gyógyászati célú használatának malactakarmányozásban történő alkalmazására vonatkozó uniós szintű tilalmát. A fennálló probléma megoldásaként ma már több kutatást folytattak a ZnO kiváltását illetően. Az antimikrobiális szerek korlátozott felhasználásával, vagy betiltásával egyetemben új megoldásokat kell találni a választott malacok egészségi állapotának javítására, védelmére, valamint a teljesítményük fenntartására. Az utóbbi időben az állattenyésztést elárasztották az alternatív termelést fokozó termékek, melyeknek hasonló hatásaik vannak a gyógyszerkészítményekhez (Kamel, 2000). Az illóolajok, szerves savak, enzimek, probiotikumok (lactobacillusok), prebiotikumok (oligoszacharidok) és a gyógynövények mind felhasználhatók takarmány-adalékanyagként a malacok választási teljesítményének növelésére.

Információk a szerzőről

  • Albert Fruzsina, Magyar Agrár- és Élettudományi Egyetem, Állattenyésztési Tudományok Intézet

    levelezőszerző
    fruzsi.albert93@gmail.com

Hivatkozások

Adachi S. (1992). Lactic acid bacteria and the control of tumours. In: B. J. B. Wood (Editor). The Lactix Acid Bacteria. https://doi.org/10.1007/978-1-4615-3522-5_10

Adjiri-Awere A., van Lunen T. A. (2005). Subtherapeutic use of antibiotics in pork production: Risks and alternatives. Canadian Journal of Animal Science, 85. 2. 117–130. https://doi.org/10.4141/A04-041

Andrea L. (2020). EU's zinc oxideb an: Preventing PWD with vaccination. PigProgress.

Apgar G. A., Kornergey E. T., Lindemann M. D., Wood C. M. (1993). The effects of feeding various levels of Bifidobacterium globosum A on the performance, gastrointestinal measurements, and immunity of weanling pigs and ont he performance and carcass measurements of growing-finishing pigs. Journal of Animal Science, 71. 2173–2179. https://doi.org/10.2527/1993.7182173x

Barnett K. L., Kornegay E. T., Risley C. R., Lindemann M. D., Schurig G. G. (1989). Characterization of creep feed consumption and its subsequent effects on immune response, scouring index and performance of weanling pigs. Journal of Animal Science, 67. 2698–2708. https://doi.org/10.2527/jas1989.67102698x

Benno Y., He F., Hosoda M., Hashimoto H., Kojima T., Yamazaki K., Iino H., Mykkanen H., Salminen S. (1996). Effects of Lactobacillus GG yoghurt on human intestinal microecology in Japanese subjects. Nutritional Today, Supplement 31. 9–11. https://doi.org/10.1097/00017285-199611001-00004

Bocourt R., Savon L., Diaz J., Brizuela M.A., Serran P., Prats A., Elias A. (2004). Effects of the probiotic activity of Lactobacillus rhamnosus on productive and health indicators of piglets. Cuban Journal of Agricultural Science, 38. 75–79.

Bokori J., Gundel J., Herold I., Kakuk T., Kovács G., Mézes M., Schmidt J., Szigeti G., Vincze L. (2003). A takarmányozás alapjai. Mezőgazda Kiadó, 52–53.

Bosi P. (2000). Modulation of immune response and barrier function in the piglet gut dietary means. Asian-Aus. Journal of Animal Science, 13. special issue: 278–293.

Boudry G., Péron V., Le Huërou-Luron I., Lallès J. P., Sève B. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134, 2256–2262. https://doi.org/10.1093/jn/134.9.2256

Bras R. (2003). Spray-dried egg for weanling pigs. Zootec. 32: 1901–1911. https://doi.org/10.1590/S1516-35982003000800014

Brown K. H. (1994). Dietary management of acute diarrhea disease: contemporary scientific issues. Journal of Nutrition. 124: 1455–1460. https://doi.org/10.1093/jn/124.suppl_8.1455S

Brul S., Coote P. (1999). Preservative agents in foods: mode of action and microbial resistance mechanisms. Int. J. Food Microbiol. 50, 1–17. https://doi.org/10.1016/S0168-1605(99)00072-0

Burt S., (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Carlson M. S., Boren C. A., Wu C., Huntington C. E., Bollinger D. W., Veum T. L. (2004). Evaluation of various inclusion rates of organic zinc either as apolysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs. J. Anim. Sci. 82, 1359–1366. https://doi.org/10.2527/2004.8251359x

Caruso és mtsai (1993) as cited in Link és mtsai (2005).

Casula G. és Cutting S. M. (2002). Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68: 2344–2352. https://doi.org/10.1128/AEM.68.5.2344-2352.2002

Crenshaw T. D., Cook M. E., Odle J. és Martin R. E. (1986). Effect of nutritional status, ages at weaning and room temperature ont he growth and system immune response on weanling pigs. J. Anim. Sci. 63: 1845 https://doi.org/10.2527/jas1986.6361845x

Critchfield J. W., Butera S. T., and Folks T. M. (1996). Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res. Hum. Retroviruses 12: 39–46. https://doi.org/10.1089/aid.1996.12.39

Cummings, J. H., Antoine J. M., Azipiroz F., Bourdet-Sicard R., Brandtzaeg P., Calder P. C., Gibson G.R., Guaner F., Isolauri E., Pannemans D., Shortt C., Tuijtelaars S. és Watzl B. (2004). Passclaim-Gut health and immunity. Eur. J. Nutr. 43: 118–179, Suppl. 2 https://doi.org/10.1007/s00394-004-1205-4

De Rodas B. A., Gilliland S. E. és Maxwell C. V. (1996). Hypercholesterolemia action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. Journal of Dairy Science. 79: 2121–2128. https://doi.org/10.3168/jds.S0022-0302(96)76586-4

Diao H., Zheng P., Yu B., He J., Mao X. B., Yu J., Chen D. W. (2014). Effects of dietary supplementation with benzoic acid on intestinal morphological structure and microflora in weaned piglets. Livest. Sci. 167, 249–256. https://doi.org/10.1016/j.livsci.2014.05.029

Dorman H. J. D., Deans S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant oils. J. Appl. Microbiol. 88, 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x

Dybkjaer L., Jacobsen A., Togersen F., and Poulsen H. (2006). Eating and drinking activity of newly weaned piglets: Effects of individual characteristics, social mixing, and addition of extra zinc to the feed. J. Anim. Sci. 84: 702–711. https://doi.org/10.2527/2006.843702x

Froning G. W., Wehling R. L., Cuppett S., and Niemann L. (1998). Moisture content and particle size of dehydrated egg yolk affect lipid and cholesterol extraction using supercritical carbon dioxide. Poult. Sci. 77: 1718–1722. https://doi.org/10.1093/ps/77.11.1718

Fuller R. (1992). History and development of probiotics. The Scientific Basis, (Fuller, R., Editor, Chapman és Hall Publishers (London). https://doi.org/10.1007/978-94-011-2364-8_1

Gabert V. M. és Sauer W. C. (1994). The effects of supplementing diets for weanling pigs with organic acids. A review. Journal of Animal and Feed Sciences, 3, 1994, 73–87. https://doi.org/10.22358/jafs/69821/1994

Gahan D. A., Lynch M. B., Callan J. J., O'Sullivan J. T., O'Doherty J. V. (2009). Performance of weanling piglets offered low-, medium- or high-lactose diets supplemented with a seaweed extract from Laminaria spp. Animal; 3: 24–31. https://doi.org/10.1017/S1751731108003017

Gang L., Lei Y., Yordan M., Wenkai R., Hengjia N., Naif A. A-D., Veeramuthu D., Yulong Y. (2017). Dietary Saccharomyces cerevisiae Cell Wall Extract Supplementation Alleviates Oxidative Stress and Modulates Serum Amino Acids Profiles in Weaned Piglets. Oxidative Medicine and Cellular Longevity, 1. https://doi.org/10.1155/2017/3967439

Guenther E. (1948). The Essential Oils. D. Van Nostrand, New York.

Hankins C. C., Veum T. L., and Reeves P. G. (1985). Zinc requirement of the baby pig when fed wet-autoclaved spray- dried egg albumen as protein source. J Nutr 115: 1600–1161. https://doi.org/10.1093/jn/115.12.1600

Hansson L., Blackberg I., Edlund M., Lundberg I., Stromqvist M. és Herneil O. (1994). Recombination human milk bile salt-stimulated lipase Catalytic activity is retained in the absence of glycosylation and unique proline-rich repeats. Journal of Biological Chemistry. 268: 26,692–26,698. https://doi.org/10.1016/S0021-9258(19)74368-3

Harmon B. G., Latour M., and Norberg S. (2002). Spray-dried eggs as a source of immune globulins for SEW pigs. Purdue University Swine Research Report. pp. 31–35.

Harper A. F., Kornegay E. T., Bryantt K. L., Thomas H. R. (1983). Efficacy of virginiamycin and a commercially-available lactobacillus probiotics in swine diets. Anim. Feed Sci. Tech. 8: 69–76. https://doi.org/10.1016/0377-8401(83)90044-5

Heim G., Walsh A. M., Sweeney T., Doyle D. N., O'Shea C. J., Ryan M. T., O'Doherty J. V. (2014). Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs. Br. J. Nutr.; 111: 1577–85. https://doi.org/10.1017/S0007114513004224

Hennequart F., O'Connell E., Spence J., Tuohy M. G. (2004). Brown macro-aglae. Aqua Feeds: Formulation Beyond;4: 14–8.

Hill G. M. és mtsai (2000). Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 78: 1010–1016. https://doi.org/10.2527/2000.7841010x

Hiss S. és Sauerwein H. (2003). Influence of dietary β-glucan on growth performance, lymphocyte proliferation, specific immune response and haptoglobin plasma concentration in pigs. J. Anim. Physiol. A. Anim. Nutrition. 87: 2–11. https://doi.org/10.1046/j.1439-0396.2003.00376.x

Hoebler C., Guillon F., Darcy-Vrillon B., Vaugelade P., Lahaye M., Worthington E., Duée P. H., Barry J. L. (2000). Supplementation of pig diet with algal fibre changes the chemical and physicochemical characteris- tics of digesta. J Sci Food Agric;80: 1357–64. https://doi.org/10.1002/1097-0010(200007)80:9<1357::AID-JSFA657>3.3.CO;2-2

Hong J. W., Kim I. H., Kwon O. S., Min B. J., Lee W. B. and Shon K. S. (2004). Influences of plant extract supplementation on performance and blood characteristics in weaned pigs. Asian- Aust. J. Anim. Sci. 17(3): 374–378. https://doi.org/10.5713/ajas.2004.374

Horn N., Ruch F., Miller G., Ajuwon K. M. and Adeola O. (2014). Impact of acute water and feed deprivation events on growth performance, intestinal characteristics, and serum stress markers in weaned pigs. J. Anim. Sci. 92: 4407–4416. https://doi.org/10.2527/jas.2014-7673

Hu C. H., Song Z. H., Xiao K., Song J., Jiao L. F., Ke Y. L. (2014). Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation, and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs. Innate Immun. 20, 478–486. https://doi.org/10.1177/1753425913499947

Hyun Y., Ellis M., Riskowski G., and Johnson R. W. (1998). Growth performance of pigs subjected to multiple concurrent environmental stressors. J. Anim. Sci. 76: 721–727. https://doi.org/10.2527/1998.763721x

Jansen S. (2002). Anticancer and health protective properties of citrus fruit components. Asia Pacific J. Clin. Nutr. 11: 79–84. https://doi.org/10.1046/j.1440-6047.2002.00271.x

Jensen B. B. (1998). The impact of feed additives on microbial ecology of the gut in young pigs. Journal of Animal and feed Sciences, 70: 45–64. https://doi.org/10.22358/jafs/69955/1998

Jensen B. B. és Jensen M. T. (1998). Microbial production of skatole in the digestive tract of the entire male pigs. In: W.K. Jensen, (ed). Skatole and Boar taint, p. 41–76.

Jensen B. B., Mikkelsen L. és Christensen D. N. (1998). Integration of ileum fistulated pigs and in vitro fermentation to quality the effect of dite on composition of microbial fermentation to quantify the effect of diet on composition of microbial fermentation in the large intestine. In: H. Jorgensen, J. A. Fernandez (eds). Proceeddings of NJF Seminer No 274 on energy and protein evaluation for the pigs in the Nordic countries. NJF report No. 119, p. 106–110.

Jiang J. F., Song X. M., Huang X. és mtsai (2012). Effects of alfalfa meal on growth performance and gastrointestinal tract development of growing ducks. Asian-Australasian Journal of Animal Sciences, vol. 25, no. 10, pp. 1445–1450. https://doi.org/10.5713/ajas.2012.12190

Jiao L. F., Ke Y. L., Xiao K., Song Z. H., Lu J. J. and Hu C. H. (2015). Effects of zinc-exchanged montmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets. Applied Clay Science 112–113; 40–43. https://doi.org/10.1016/j.clay.2015.04.012

Kalemba D., Kunicka A., (2003). Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813–829. https://doi.org/10.2174/0929867033457719

Kamel C. (2000). A novel look at a classic approach of plant extracts. Feed Mix. 8: 16–18.

Ke Y. L., Jiao L. F., Song Z. H., Xiao K., Lai T. M., Lu J. J., Hu C. H. (2014). Effects of cetylpyridinium-montmorillonite, as alternative to antibiotic, on the growth performance, intestinal microflora and mucosal architecture of weaned pigs. Anim. Feed Sci. Technol. 198, 257–262. https://doi.org/10.1016/j.anifeedsci.2014.10.010

Kelly D. (1998). Probiotics in young and newborn animals. J. Anim. Sci. 7: 15–23. https://doi.org/10.22358/jafs/69952/1998

Kelly D., Smyth J. A., és McCracken K. J. (1991). Digestive development of early weaned pig. 2 Effect of level of feed intake on digestive enzyme activity during the immediate post-weaning period. Br. J. Nutr. 65: 181–188. https://doi.org/10.1079/BJN19910079

Kendiah G. (1999). Comparison of the passive prophylactic effect of bovine milk immunoglobulin fed as a bolus or continuously against diarrhoea caused vy Escherichia coli K88 using piglets as models. MSc Thesis, Massey University, Palmerston North, New Zealand.

Kim D. H., Song M. J., Bae E. A. and Han M. J. (2000). Inhibitory effect of herbal medicines on rotavirus infectivity. Biol. Pharm. Bull. 23: 356–358. https://doi.org/10.1248/bpb.23.356

Kogan G., and Kocher A. (2007). Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livestock Science, vol. 109, no. 1-3, pp. 161–165. https://doi.org/10.1016/j.livsci.2007.01.134

Kong X. F., Wu G. Y., Liao Y. P. és mtsai (2007a). Dietary supplementation with Chinese herbal ultra-fine powder enhances cellular and humoral immunity in early-weaned piglets. Livestock Science, vol. 108, no. 1-3, pp. 94–98. https://doi.org/10.1016/j.livsci.2007.01.002

Kong X. F., Wu G. Y., Liao Y. P. és mtsai (2007b). Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in earlyweaned piglets. Livestock Science, vol. 108, no. 1-3, pp. 272–275. https://doi.org/10.1016/j.livsci.2007.01.079

Kong X. F., Yin F. G., He Q. H. és mtsai (2009). Acanthopanax senticosus extract as a dietary additive enhances the apparent ileal digestibility of amino acids in weaned piglets. Livestock Science, vol. 123, no. 2-3, pp. 261–267. https://doi.org/10.1016/j.livsci.2008.11.015

Krisper P., Tisler V., Skubic V., Rupnik I. and Kobal S. (1992). The use of tannin from chestnut (Castanea vesca). Basic Life Sci. 59: 1013–1019. https://doi.org/10.1007/978-1-4615-3476-1_62

Lalles J.-P., Boudry G., Favier C., Le Floc'h N., Luron I., Montagne L., Oswals I. P., Piel C. és Seve (2004). Gut function and dysfunction in young pigs: microbiology, Anim. Es. 53: 301–316. https://doi.org/10.1051/animres:2004018

Lambert R. J., Skandamis P. N., Coote P. J., Nychas G. J., (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

Li J. and Kim I. H. (2014). Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Animal Science Journal, vol. 85, no. 6, pp. 698–705. https://doi.org/10.1111/asj.12195

Lin H. (2000). Studies ont he protection role of probiotics adb milk calcium on Salmonella typhimurium infection in mice. MSc Thesis, Massey University, Palmerston North, New Zealand

Lin J., Lin E. C., Yu I. T., Liu H. T., Yang I. S., Huang C. H. (2002). Effect of probiotic supplementation on growth performance, serum cholesterol and triglyceride, immune response and fecal bacteria in early weaned piglets. Agri. Assn. China 91, 3 (4) 325–336.

Link R., Kovac G., Pistl J., (2005). A note on probiotics as an alternative for antibiotics in pigs. Journal of Animal and Feed Sciences, 14, 513–519. https://doi.org/10.22358/jafs/67049/2005

Lombardi V. R. M., Fernandez-Nova L., Etcheverria I., Seoane S. és Cacabelos R. (2005). Studies on immunological, biochemical, haematological and growth regulation by Scomber scombrus fish protein extract supplementation in young pigs. Animal Science Journal. 76: 159–170 https://doi.org/10.1111/j.1740-0929.2005.00252.x

Lönnerdal B. (2000). Dietary factors influencing zinc absorption. Journal of Nutrition 130: 1378S–1383S. https://doi.org/10.1093/jn/130.5.1378S

Lopez J. (2000). Probiotics in animal nutrition. Asian-Aus. J. Anim. Sci. 13:12–26.

Magana S. M., Quintana P., Aguilar D. H., Toledo J. A., Angeles-Chavez C., Cortes M. A., Leon L., Freile-Pelegrin Y., Lopez T., Torres Sanchez R. M. (2008). Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 281, 192–199. https://doi.org/10.1016/j.molcata.2007.10.024

Mahan D. C. és Lepine A. J. (1991). Effect of pig weaning weight and associated nursery feeding programs on subsequent performance to 105 kg body weight. J. of Anim. Sci. 69: 1370–1378. https://doi.org/10.2527/1991.6941370x

Malachováa K., Prausb P., Rybkováa Z., Kozákb O. (2011). Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 53, 642–645. https://doi.org/10.1016/j.clay.2011.05.016

McDonnell P., Figat S., O'Doherty J. V. (2010). The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid con- centrations. Animal; 4: 579–85. https://doi.org/10.1017/S1751731109991376

Mroz Z., Derkker R. A., Koopmans S. J. és Le Huerou-luron I. (2003). Performance, functional features of the digestion tract and haematological indices in weaned piglets fed antibiotic free diet and exposed to a viro-bacteria infection, in: Ball R. O. (Ed), Proceeding of the 9th international symposium on digestive physiology in pigs, Banff, AB, Canada, pp. 180–182.

Newby T. J., Miller B. G., Stokes C. R. és Bourne F. J. (1983). Hypersensitivity to dietary antigens as predisposing factors in post weaning diarrhoea. Pig Vet. Soc. Proc. 10: 50.

Nunes C. S. és Guggenbuhl P. (1998). Evaluation of salinomycin (Biocox®) effects on pig performance. Journal of Animal and Feed Sciences. 7: 167–170. https://doi.org/10.22358/jafs/69964/1998

Oberleas D., Muhrer M. E, and O'Dell B. L. (1962). Effects of phytic acid on zinc availability and parakeratosis in swine. J. Anim. Sci. 21: 57–61. https://doi.org/10.2527/jas1962.21157x

O'Doherty J. V., Dillon S., Figat S., Callan J. J., Sweeney T. (2010). The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol; 157: 173–80. https://doi.org/10.1016/j.anifeedsci.2010.03.004

O'Donovan L. and Brooker J. D. (2001). Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus Gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147: 1025–1033. https://doi.org/10.1099/00221287-147-4-1025

O'Shea C. J., McAlpine P., Sweeney T., Varley P. F. and O'Doherty J. V. (2014). Effect of the interaction of seaweed extracts containing laminarin and fucoidan with zinc oxide on the growth performance, digestibility and faecal characteristics of growing piglets. Br. J. Nutr.; 111: 798–807. https://doi.org/10.1017/S0007114513003280

Pengfei L., Xiangshu P., Yingjun R., Xu H., Lingfeng X. and Hongyu Z. (2012). Effects of Adding Essential Oil to the Diet of Weaned Pigs on Performance, Nutrient Utilization, Immune Response and Intestinal Health. Asian-Aust. J. Anim. Sci. Vol. 25, No. 11: 1617–1626. https://doi.org/10.5713/ajas.2012.12292

Perdigon G., Nader de Mascias M. E., Alvarez S., Oliver G., de Ruiz P. és Holgado A. (1990). Prevention of gastrointestinal infection using immunobiological methods with milk fermentes with Lactobacillus casei and lactobacillus acidophilus. Journal of Dairy Research 57: 255–264. https://doi.org/10.1017/S002202990002687X

Philip V., Harris J., Adams R. és mtsai (2011). A survey of aspartatephenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion- pairs. Biochemistry, vol. 50, no. 14, pp. 2939–2950. https://doi.org/10.1021/bi200066k

Piard J. C. és Desmazeaud M. (1991). Inhibiting factors produced by latic acid bacteria. I. Oxygen metabolites and catabolism end. products. Lait 71, 525–541. https://doi.org/10.1051/lait:1991541

Pluske J. B., Williams I. H. és Aherne F. X. (1996). Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 62: 131–144. https://doi.org/10.1017/S1357729800014417

Pluske J. B., Hampson D. J. és William I. H. (1997). Factors influencing the structure és functions of the small intestine in the weaned pig: a review, Livest. Prod. Sci. 51 (1997) 215–236. https://doi.org/10.1016/S0301-6226(97)00057-2

Poulsen H. D. (1989). Zinc oxide for weaned pigs. 40th Annual Meeting EAAP, Dublin, Ireland, 8 p.

Poulsen H. D. (1995). Zinc oxide for weanling piglets. Acta Agriculturae Scandinavica Section A - Animal Science 45: 159–167. https://doi.org/10.1080/09064709509415847

Prgomet C., Sarikaya H., Bruckmaier R. M. és Pfaffl M. W. (2005). Short-term effects on pro-inflammatory cytokine, lactoferrin and CD14 mRNA expression levels in bovine immunoseparated milk and blood cells treated by LPS. Journal of Veterinary Medicine. 52: 317–328. https://doi.org/10.1111/j.1439-0442.2005.00741.x

Richard N. (2007). Effect of probiotic and lactoferrin-supplemented diets on daily gain, feed intake, feed conversion rate, mean weekly faecal scores, lymphocyte to neutrophil ratio, immunity, general health, and hematological parameters in weanling pigs subjected to an immunological challenge. Massey University, Palmerston North, New Zealand: I-II., XIV.

Rossi M. és mtsai (2013). Developments in understanding and assessment of egg and egg product quality over the last century. Worlds Poultry Science Journal 69: 414–429. https://doi.org/10.1017/S0043933913000408

Ruperez P., Ahrazem O. and Leal J. A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem.; 50: 840–5. https://doi.org/10.1021/jf010908o

Ryan M. T., Smith A. G., O'Doherty J. V., Bahar B., Reilly P., Sweeney T. (2010). Effects of nutrient supplementation with laminarin derived from Laminaria hyperborea and Laminaria digitata on mucin gene expression in the porcine ileum. Livest Sci;133: 236–8. https://doi.org/10.1016/j.livsci.2010.06.074

Scalbert A. (1991). Antimicrobial properties of tannins. Phytochemistry 30: 3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L

Sahnmugam M., Mody K. H. (2000). Heparinoid-active sulphatedpolysaccharides from marine algae as potential blood anticoagulant agents. J. Curr. Sci.; 79: 1672–83.

Sauerwein H., Schmitz S. and Hiss S. (2007). Effects of a dietary application of a yeast cell wall extract on innate and acquired immunity, on oxidative status and growth performance in weanling piglets and on the ileal epithelium in fattened pigs. Journal of Animal Physiology and Animal Nutrition, vol. 91, no. 9-10., pp. 369–380. https://doi.org/10.1111/j.1439-0396.2006.00663.x

Sikkema J., De Bont J. A. M., Poolman B. (1994). Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269, 8022–8028. https://doi.org/10.1016/S0021-9258(17)37154-5

Smith A. G., O'Doherty J. V., Reilly P., Ryan M. T., Bahar B., Sweeney T. (2011). The effects of laminarin derived from Laminaria digitata on measure- ments of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pig. Br. J. Nutr.; 105: 669–77. https://doi.org/10.1017/S0007114510004277

Smith W. H., Plumlee M. P., and Beeson W. M. (1985). Effect of source of protein on zinc requirement of growing pig J. Anim. Sci. 21: 399–405. https://doi.org/10.2527/jas1962.213399x

Song M. és mtsai (2012). Effects of dietary spray-dried egg on growth performance and health of weaned pigs. J. Anim. Sci. 90: 3080–3087. https://doi.org/10.2527/jas.2011-4305

Steijn J. M. (2001). Milk ingredients as nutraceuticals. International Journal of Dairy Technology, 54(3): 81–88. https://doi.org/10.1046/j.1364-727x.2001.00019.x

Stuyven E., Cox E., Vancaeneghem S., Arnouts S., Deprez P. and Goddeeris B. M. (2009). Effect of -glucans on an ETEC infection in piglets. Veterinary Immunology and Immunopathology, vol. 128, no. 1-3, pp. 60–66. https://doi.org/10.1016/j.vetimm.2008.10.311

Suiryanrayna M. V. A. N., Ramana J. V. (2015). A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 6, 45. https://doi.org/10.1186/s40104-015-0042-z

Sweeney T., Collins C. B., Reilly P., Pierce K. M., Ryan M. and O'Doherty J. V. (2012). Effect of purified -glucans derived from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. British Journal of Nutrition, vol. 108, no. 7, pp. 1226–1234. https://doi.org/10.1017/S0007114511006751

Tang S. G. és mtsai (2015). Chemical Compositions of Egg Yolks and Egg Quality of Laying Hens Fed Prebiotic, Probiotic, and Synbiotic Diets. J. Food. Sci. 80: C1686–C1695. https://doi.org/10.1111/1750-3841.12947

Tang Z. G., Wen C., Wang L. C., Wang T., Zhou Y. M. (2014). Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal function of broiler chickens. Anim. Feed Sci. Technol. 189, 98–106. https://doi.org/10.1016/j.anifeedsci.2013.12.014

Thacker P. A. (1999). Nutritional requirements of early weaned pigs: a review. Pig News Info. 20 pp. 13N–24N. https://doi.org/10.5713/ajas.1999.976

Thacker P. A. (2013). Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. and Biotech. 4(1): 35. https://doi.org/10.1186/2049-1891-4-35

Tome D. és Debbabi H. (1998). Physiological effects of milk protein components. Int. Dairy Journal. 8: 383–392. https://doi.org/10.1016/S0958-6946(98)00061-2

Torrallardona D., Badiola I., Broz J. (2007). Effects of benzoic acid on performance and ecology of gastrointestinal microbiota in weanling piglets. Livest. Sci. 108, 210–213. https://doi.org/10.1016/j.livsci.2007.01.062

Tungthanathanich P. (1994). The effects of diet and feeding on small intestinal development in piglets during the first 24 hours after birth. Volume 1 text. PhD Thesis, Massey University, Palmerston North, New Zealand.

Ultee A., Bennik M. H., Moezelaar R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68, 1561–1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002

Van Dijk A. J., Everts H., Nabuurs N. J. A., Margry R. J. C. F. és Beynen A. C. (2003). Growth performance of weaned pigs fed spray-dried animal plasma: review, Livest. Prod. Sci. 68. pp. 263–274. https://doi.org/10.1016/S0301-6226(00)00229-3

Walsh A. M., Sweeney T, O'Shea C. J., Doyle D. N., O'Doherty J. V. (2013). Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr.; 110: 1630–1638. https://doi.org/10.1017/S0007114513000834

Walton J. R. (2001). Benefits of antibiotics in animal feed. In: Recent developments in pig nutrition. 3 (eds) J. Wiseman és P.C. Guarnsworthy. Nottingham University Press, Nottingham, U.K. pp. 11–37.

Wenk C. (2003). Herbs and botanicals as feed additives in monogastric animals. Asian-Aust. J. Anim. Sci. 16(2): 282–289. https://doi.org/10.5713/ajas.2003.282

Wu G., Bazer F. W., Dai Z., Li D., Wang J., and Wu Z. (2014). Amino acid nutrition in animals: protein synthesis and beyond. Annual Review of Animal Biosciences, vol. 2, pp. 387–417. https://doi.org/10.1146/annurev-animal-022513-114113

Wu J. F., Hsu J. B., Cheng C. S., Hsyi J. N. (2001). Microbial supplements in pig diets 1. Growth benefits and cost consideration in the replacement of antibiotics in diets for growing-finishing pigs. Agr. Assn. China 90, 2 (1): 16–23.

Xu Y. T., Liu L., Long S. F., Pan L., Piao X. S. (2017). Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Animal Feed Science and Technology 235: 110–111. https://doi.org/10.1016/j.anifeedsci.2017.10.012

Yu I. T., Ju C. C., Lin J., Wu H. L. és Yen H. T. (2004). Effects of probiotics and selenium combination ont he immune and blood cholesterol concentration. Journal of Animal and Feed Sciences, 13: 625–634. https://doi.org/10.22358/jafs/67630/2004

Yuan S. B., Chen D. V., Zhang K. Y. and Yu B. (2007). Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian- Australasian Journal ofAnimal Sciences, vol. 20, no. 10, pp. 1600–1605. https://doi.org/10.5713/ajas.2007.1600

Zabielski R. (1998). Regulatory peptides in milk, food and in the gastrointestinal lumen of young animals and children. Journal of Animal and Feed Sciences,7: 65–78. https://doi.org/10.22358/jafs/69956/1998

Internetes források

http1: http://www.allaboutfeed.net/Feed-Additives/Articles/2019/8/Zero-Zinc-Summit-How-to-replace-ZnO-460391E/

http2: http://www.babolnatakarmany.hu/mit-tehetunk-cink-oxid-nelkul/

http3: http://www.ema.europa.eu/en/documents/referral/zinc-oxide-article-35-referral-questions-answers-veterinary-medicinal-products-containing-zinc-oxide_en.pdf

http4: http://www.fwi.co.uk/livestock/pigs/zinc-oxide-to-be-phased-out-in-pig-production-by-2022

Letöltések

Megjelent

2021-06-30

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

A cink-oxid (ZnO) adagolás kiváltásának lehetőségei választott malacoknál. (2021). Animal Welfare, Etológia és Tartástechnológia (AWETH), 17(1), 1-21. https://doi.org/10.17205/SZIE.AWETH.2021.1.001

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei

1 2 > >>