Vicia faba - Rhizobium leguminosarum szimbiotikus kapcsolata a talaj kémhatásának és alumínium koncentrációjának függvényében

Szerzők

  • Hosam E.A.F. Bayoumi Hamuda Budapesti Műszaki Főiskola, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet, 1034 Budapest, Doberdó u. 6., Szent István Egyetem, Környezettudományi Doktori Iskola, 2103 Gödöllő, Páter K. u. 1.
  • Orosz Erika Szent István Egyetem, Környezettudományi Doktori Iskola, 2103 Gödöllő, Páter K. u. 1.
  • Yasmin Hamuda Szent István Egyetem, Mezőgazdaság- és Környezettudományi Kar, 2103 Gödöllő, Páter K. u. 1.
  • Tóth Nikolett Szent István Egyetem, Környezettudományi Doktori Iskola, 2103 Gödöllő, Páter K. u. 1.
  • Kecskés Mihály Szent István Egyetem, Környezettudományi Doktori Iskola, 2103 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.4114

Kulcsszavak:

Rhizobium leguminosarum, talaj kémhatás és Al3 koncentráció, szimbiotikus kapcsolatok, Vicia faba

Absztrakt

Az alumínium (Al) által okozott toxicitás egyike a legelterjedtebb mezőgazdasági problémáknak. pH és Al toleráns Rhizobium leguminosarum és Vicia faba törzseket szelektáltunk in vitro és in vivo körülmények között. Az alumínium toleráns V. faba törzsek tenyésztése egyike azon tényezőknek, melyek megoldást nyújthatnak az alumínium által okozott talajszennyezettségre. A törzsek szaporodását táplevesben, 28°C-on, 48 órán keresztül történő inkubációt követően értékeltük, optikai denzitásuk (sűrűségük) alapján. Tanulmányaink azt igazolták, hogy a pH változásokra leginkább toleráns törzs a Rhizobium Lóbab Z volt, a legérzékenyebb pedig a HB-3841str+. Habár a HB-3841str+ és E1012 törzsek nem szaporodtak 25 μM KAl(SO4)2-t tartalmazó táptalajon, 25 μMAl(NO3)3-t tartalmazó közegben már igen. Az eredmények azt igazolták, hogy 100 μM Al2(SO4)3 koncentráció nem volt hatással a Rhizobium törzsek szaporodására (kivéve az E1012 törzset), ellenben 50 μM AlCl3 koncentráció már gátolta a törzsek szaporodását (kivéve a Bükköny 75/4 törzsét). A vizsgált alumínium vegyületek növekvő sorrendje a gátló hatásuk függvényében: Al(NO3)3 < Al2(SO4)3 < KAl(SO4)2 < AlCl3. Afentiekből levonható a következtetés, hogy mivel a Rhizobium Lóbab Z törzs képes nagy koncentrációjú Al tartalmú közegben, in vitro körülmények között szaporodni, e törzs alkalmas lehet magas alumínium tartalmú talajok gümőképző képességének növelésére. A törzsek lóbabbal történő szimbiotikus képességét vizsgáltuk agyagbemosódásos barna erdőtalajon (Gödöllő), különböző pH és Al koncentráció mellett. A legjobb eredményt 6,6 pH mellett, az alumínium 50–100 mg kg-1 koncentrációjánál kaptuk, a pH 5,31 volt. A Bükköny 75/4 és HB-3841str+ törzsek 6,6 pH-jú talajon kiválóan tenyészthetőek. Lóbab Z és Bükköny 75/4, 5,31 pH-jú, 50-100 mg kg-1 Al-t tartalmazó táptalajon tenyészthető. Végső következtetésként levonható, hogy az egyes törzsek szaporodása az Al koncentrációtól függött, és a Bükköny 75/4 törzs kiválóan alkalmazható 5,31 pH-jú, az alumíniumot 50–100 mg kg-1 koncentrációban tartalmazó talajok oltására.

Információk a szerzőről

  • Hosam E.A.F. Bayoumi Hamuda, Budapesti Műszaki Főiskola, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet, 1034 Budapest, Doberdó u. 6., Szent István Egyetem, Környezettudományi Doktori Iskola, 2103 Gödöllő, Páter K. u. 1.

    levelező szerző
    hosameaf@yahoo.com

Hivatkozások

Adamczyk B., Firek A., Zasonski S. 1968: Mobile aluminium in mountain forest soils. Pol. J. Soil Sci. 1: 2.

Alva A. K., Blamey F. P. C., Edwardsd G., Asher C. J. 1986: An evaluation of aluminium indices to predict aluminium toxicity to plants grown in nutrient solutions. Commun. Soil Sci. Plant Anal. 17: 1271-1280. https://doi.org/10.1080/00103628609367789

Barabasz W., Albińska D., Jaśkowska M., Lipiec J. 2002: Ecotoxicology of Aluminium. Pol. J. Environ. Stud. 11: 199-203.

Batzil J. M., Graves W. R., Van Berkum P. 1992: Diversity among rhizobia effective with Robinia pseudoacacia. Appl. Environ. Microbiol. 58: 2137-2143. https://doi.org/10.1128/aem.58.7.2137-2143.1992

Boudot J. P., Bel Hadj B. A., Chone T. 1988: Dependence of carbon and nitrogen mineralisation rates upon amorphous metallic constituents and allophanes in highland soils. Geoderma 42: 245-260. https://doi.org/10.1016/0016-7061(88)90004-3

Brady D. J., Edwards D. G., Asher C. J. 1994: Effects of aluminium on the peanut (Arachis hypogaea L.) / Bradyrhizobium symbiosis. Plant and Soil 159: 265-276. https://doi.org/10.1007/BF00009289

Burris R. H. 1974: Methodology In Quispel A. (ed.): The biological N2-fixation. North Holland Publishing, Amsterdam pp. 9-33.

Carter J. M., Gardner W. K., Gibson A. H. 1994: Improved growth and yield of faba bean (Vicia faba cv. Fiord) by inoculation with strains of Rhizobium leguminosarum biovar viciae in acidic soil in south west Victoria. Aust. J. Agric. Res. 45: 613-623. https://doi.org/10.1071/AR9940613

Chandra R., Pareek R. P. 1991: Comparative performance and competitiveness of chickpea (Cicer arietinum L.) Rhizobium strains in acidic and neutral soils. Ind. J. Pulses Res. 4: 189-194.

Date R. A., Holliday J. 1979: Selecting Rhizobium for acid, intertile soils of the tropics. Nature (London). 277: 62-64. https://doi.org/10.1038/277062a0

Donnelly P. K., Entry J. A., Crawford D. L., Cromack K. Jr. 1990: Cellulose and lignin degradation in forest soils: response to moisture, temperature, and acidity. Microb. Ecol. 20: 289-295. https://doi.org/10.1007/BF02543884

Ederson Da C. J., Marsh T. L., Tiedje M. J., De S Moreira M. F. 2009: Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME J. 3: 1004-1011. https://doi.org/10.1038/ismej.2009.47

Evans L. S., Lewis K. F., Vella F. A. 1980: Effect of nutrient medium pH on symbiotic nitrogen fixation by Rhizobium leguminosarum and Pisum sativum. Plant and Soil 56: 71-77. https://doi.org/10.1007/BF02197954

Evans J., Wallace C., Dobrowolski N., Pritchard I., Sullivan B. 1993: Requirement of field pea for inoculati- on with Rhizobium and lime pelleting in soils of Westren Australia. Aust. J. Exp. Agric. 33: 767-773. https://doi.org/10.1071/EA9930767

Flis S. E., Glenn A. R., Dilworth M. J. 1993: The interaction between aluminium and root-nodule bacteria. Soil Biol. Biochem. 25: 403-417. https://doi.org/10.1016/0038-0717(93)90066-K

Franco A. A., Munns D. N. 1982: Acidity and aluminum resistance of strains on nodulation nitrogen fixation and growth of Phaseolus vulgaris in solution culture. Soil Sci. Soc. Am. J. 46: 296-302. https://doi.org/10.2136/sssaj1982.03615995004600020016x

Göttlein A., Heim A., Matzner E. 1999: Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant and Soil 211: 41-49. https://doi.org/10.1023/A:1004332916188

Graczyk A., Dlugaszek M. 1993: Biochemical processes and molecular mechanisms of aluminium toxicity. Rocz. PZH. 44: 23-41.

Graham P. H., Viteri S. E., Mackie F. 1982: Variation in acid soil tolerance among strains of Rhizobium phase- oli. Field Crops Res. 5: 121-128. https://doi.org/10.1016/0378-4290(82)90012-0

Graham P. H., Draeger K. J., Ferrey M. L. 1994: Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1 1899. Can. J. Microbiol. 40: 198-207. https://doi.org/10.1139/m94-033

Gromysz-Kalkowska K., Szubratowska E. 1999: Aluminium. Occurence in nature and its influence on plants, animal and human organisms. Wyd. UMCS, Lublin.

Gromysz-Kałkowska K., Kanoniuk D., Szubartowskae., Unkiewicz-Winiarczyk A. 2004: Influence of drinking water-administered aluminium on morphology and respiratory function of blood in rats. Polish Journal of Environmental Studies 13: 515-519.

Howieson J. G., Ewing M. A., D'aantuono M. F. 1988: Selection of acid tolerance in Rhizobium meliloti. Plant and Soil 105: 179-188. https://doi.org/10.1007/BF02376781

Helemish F. A., El-Gammal S. M. 1987: Salt and pH tolerance of Rhizobium leguminosarum TM271. Zentralbl. Mikrobiol. 142: 211-214. https://doi.org/10.1016/S0232-4393(87)80018-5

Helemish F. A., El-Mokadem M. T., Abou Zekry S.H. 1993: Nutritional requirements and invertase activity of Rhizobium nodulating Sesbania sesban roots. Zentralbl. Mikrobiol. 148: 582-587. https://doi.org/10.1016/S0232-4393(11)80222-2

Igual J. M., Rodríguez-Barrueco C., Cervantes E. 1997: The effect of aluminium on nodulation and symbiotic nitrogen fixation in Casuarina cunninghamiana Miq. Plant and Soil 41: 41-46. https://doi.org/10.1023/A:1004259123008

Inostroza-Blancheteau C., Soto B., Ulloa P., Aquea F., Reyes-Díaz M. 2008: Resistance mechanisms of aluminum (Al3+) phytotoxicity in cereals: Physiological, genetic and molecular bases. J. Soil Sci. Plant Nutr. 8: 57-71. https://doi.org/10.4067/S0718-27912008000300006

Johnson A. C., Wood M. 1987: Deionized distilled water as a medium for aluminium toxicity studies of Rhizobium. Lett. Appl. Microbiol. 4: 137-139. https://doi.org/10.1111/j.1472-765X.1987.tb01601.x

Kabata-Pendias A., Pendias M. 1993: Biogeochemia pierwiastkow sladowych. PWN Warszawa.

Kahindi J. H. P., Woomer P., George T., de Souza-Morera F. M., Karanja N. K., Giller K. E. 1997: Agricultural intersification, soil biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing bac- teria. Appl. Soil Ecol. 6: 55-76. https://doi.org/10.1016/S0929-1393(96)00151-5

Kennedy I. R. 1992: Acid soil and acid rain. 2nd ed., Research Studies Press Ltd. Taunton, Somerset, England.

Keyser H., Munnsd N. 1979: Tolerance of rhizobia to acidity, aluminium and phosphate. Soil Sci. Soc. Am. J. 43: 519-523. https://doi.org/10.2136/sssaj1979.03615995004300030018x

Kinraide T. B., Parker D. R. 1987: Cation amelioration of aluminium toxicity in wheat. Plant Physiol. 83: 546-551. https://doi.org/10.1104/pp.83.3.546

Kochian L. V. 1995: Cellular mechanisms of aluminum toxicity and resistance in plants. Ann. Rev. Plant Physiol. Mol. Biol. 46: 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321

Lesueur D., Diem H. G., Dianda M., Le Roux C. 1993: Selection of Bradyrhizobium strains and provenances of Acacia mangium and Faidherbia albida: Relationship with their tolerance to acidity and aluminium. Plant and Soil. 149: 159-166. https://doi.org/10.1007/BF00016605

Ma J. F., Ryan P. R., Delhaize E. 2001: Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273-278. https://doi.org/10.1016/S1360-1385(01)01961-6

Macdonald T. L., Martin R.B. 1988: Aluminum ion in biological systems. Trends Biochem. Sci. 13: 15-19. https://doi.org/10.1016/0968-0004(88)90012-6

Marziah M., Ariffin S. Z., Shamsuddin Z. H. 1995: Effects of A1 on growth, nodulation and polyphenol oxidase activities in groundnut. Soil Biol. Biochem. 27: 679-681. https://doi.org/10.1016/0038-0717(95)98648-8

Martin R. B. 1986: The chemistry of aluminum as related to biology and medicine. Clin. Chem. 32: 1797-1806. https://doi.org/10.1093/clinchem/32.10.1797

Matsumoto H. 2000: Cell biology of aluminum toxicity and tolerance in higher plants. Int. Rev. Cytol. 200. 1-46. https://doi.org/10.1016/S0074-7696(00)00001-2

Merbach W., Augustin J., Mirus E. 1990: Effect of aluminium on the legume-rhizobia-symbiosis. Zentralbl. Mikrobiol. 145: 521-527. https://doi.org/10.1016/S0232-4393(11)80057-0

Neogy M., Datta J., Roy A. K., Mukherji S. 2002: Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek. J. Environ. Bio. 23: 411-416.

Nowak P., Brus R. 1996: Doswiadczalne i kliniczne aspekty neurotoksycznego dzialania glinu. Post. Hig.Med. Dosw. 50: 621-633.

Pandhler M. S., Kahlon S. S. 1978: pH and salt tolewrance of Rhizobium leguminosarum isolate from pea (Pisum sativum). Ind. J. Microbiol. 18: 81-84.

Parton W. J., Sanford R. L., Sanchez P. A., Stewart J. W. B., Bonde T., Crosley D., van Veen H., Yost R. 1989: Modelling soil organic matter dynamics in tropical soils. In: Dynamics of soil organic matter in tropical soils Coleman D. C., Oades J. M., Uehara G. (eds.) University of Hawaii: Honolulu USA. pp. 153-171.

Paudyal S. P., Aryal R. R., Chauhan S. V. S., Maheshwari D. K. 2007: Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci. World. 5: 27-32. https://doi.org/10.3126/sw.v5i5.2652

Rai R. 1992: The effect of acidity factors on aspects of symbiotic N2-fixation of lens cultivars in acid soils. J. Gen. Appl. Microbiol. 38: 391-406. https://doi.org/10.2323/jgam.38.391

Richardson A. E., Simpson R. J. 1989: Acid-tolerance and symbiotic effectiveness of Rhizobium trifolii associated with a Trifolium subterranum L.-based pasture growing on an acid soil. Soil Biol. Biochem. 21: 87-95. https://doi.org/10.1016/0038-0717(89)90016-3

Ritchie G. S. P. 1995: Soluble aluminium in acidic soils: principals and practicalities. Plant and Soil 171: 17-27. https://doi.org/10.1007/BF00009559

Rogers N. J.; Carson K. C., Glenn A. R., Dilworth M. J., Hughes M. N., Poole R. K. 2001: Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin. BioMetals. 14: 59-66.

Roy N., Chakrabartty P. K. 2000: Effect of aluminum on the production of siderophore by Rhizobium sp. (Cicer arietinum). Curr. Microbiol. 41: 5-10. https://doi.org/10.1007/s002840010082

Ryan P. R., Delhaize E., Jones D. L. 2001: Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 527-560. https://doi.org/10.1146/annurev.arplant.52.1.527

Santa R. I. 2000: Biomass estimation and nutrient pools in four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. Forest Ecol. Manag. 132: 127-141. https://doi.org/10.1016/S0378-1127(99)00219-4

Schmohl N., Horst W. J. 2002: Effect of aluminium on the activity of apoplastic acid phosphatase and the exudation of macromolecules by roots and suspension-culture cells of Zea mays L. J. Plant Physiol. 159: 1213-1218. https://doi.org/10.1078/S0176-1617(04)70345-4

Sledge M. K., Pechter P., Payton M. E. 2005: Aluminum tolerance in Medicago truncatula germplasm. Crop Sci. 45: 2001-2004. https://doi.org/10.2135/cropsci2004.0673

Taylor R. W., Williams M. L., Sistani K. R. 1991: Nitrogen fixation by soybean-Bradyrhizobium combinations under acidity, low P and high Al stresses. Plant and Soil 131: 293-300. https://doi.org/10.1007/BF00009461

Tripathi A. K., Mishra R. K. 1992: Screening chickpea germplasm for nodulation inacidic soils. Curr. Res. Univ. Agric. Sci. Bangalore 21: 151-152.

Vincent J. M. 1970: A manual for the practical study of root nodule bacteria. Blackwell Scientific Publications, Oxford, UK.

Wakao N., Yasuda T., Jojima Y., Yamanka S., Hirishi A. 2002: Enhanced growth of Acidiocella facilis and related acidophilic bacteria at high concentrations of aluminum. Microb. Environ. 17: 98-104. https://doi.org/10.1264/jsme2.2002.98

Walse C., Berg B., Sverdrup H. 1998: Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ. Rev. 6: 25-40. https://doi.org/10.1139/a98-001

Wenzl P., Patinő M. G., Chaves L. A., Mayer E. J., Rao M. I. 2001: The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiology. 125: 1473-1484. https://doi.org/10.1104/pp.125.3.1473

Whelan A. M., Alexander M. 1986: Effects of low pH and high Al, Mn and Fe levels on the survival of Rhizobium trifolii and the nodulation of subterranean clover. Plant and Soil 92: 363-371. https://doi.org/10.1007/BF02372484

Wisniewski J. P., Delmotte F. M. 1996: Modulation of carbohydrate-binding capacities and attachment ability of Bradyrhizobium sp. (lupinus) to white lupin roots. Can. J. Microbiol. 42: 234-242. https://doi.org/10.1139/m96-035

Wolffe A. B., Streit W., Kipe-Nolt J. A., Vargas H., Werner D. 1991: Competitiveness of Rhizobium leguminosarum bv. phaseoli strains in relation to environmental stress and plant defense mechanism. Biol. Fert. Soils. 12: 170-176. https://doi.org/10.1007/BF00337197

Wood M. 1995: A mechanism of aluminium toxicity to soil bacteria and possible ecological implications. Plant and Soil 171: 63-69. https://doi.org/10.1007/BF00009566

Wood M., Cooper J. E. 1984: Aluminium toxicity and multiplication of Rhizobium trijolii in a defined growth medium. Soil Biol. Biochem. 16: 571-576. https://doi.org/10.1016/0038-0717(84)90074-9

Wood M., Cooper J. E. 1985: Screening clover and Lotus rhizobia for tolerance of acidity and aluminium. Soil. Biol. Biochem. 17: 493-497. https://doi.org/10.1016/0038-0717(85)90016-1

Wood M., Cooper J. E. 1988a: Acidity, aluminium and multiplication of Rhizobium trifolii: Effects of initial inoculum density and growth phase. Soil Biol. Biochem. 20: 83-87. https://doi.org/10.1016/0038-0717(88)90130-7

Wood M., Cooper J. E. 1988b: Acidity, aluminium and multiplication of Rhizobium trifoli: Possible mechanisms of aluminium toxicity. Soil Biol. Biochem. 20: 95-99. https://doi.org/10.1016/0038-0717(88)90132-0

Wood M., Shepherd G. 1987: Characterization of Rhizobium trifolii isolated from soils of different pH. Soil Biol. Biochem. 19: 317-321. https://doi.org/10.1016/0038-0717(87)90016-2

Wood M., Cooper J. E., Holding A. J. 1984a: Soil acidity factors and nodulation of Trifolium repens. Plant and Soil 78: 367-379. https://doi.org/10.1007/BF02450370

Wood M., Cooper J. E., Holding A. j. 1984b: Aluminium toxicity and nodulation of Trifolium repens. Plant and Soil 78: 381-391. https://doi.org/10.1007/BF02450371

Wright R. J., Baligar V. C., Ahlrichs J. L. 1989: The influence of extractable and soil solution aluminium on root growth of wheat seedlings. Soil Sci. 148: 293-302. https://doi.org/10.1097/00010694-198910000-00009

Zhang J., He Z., Tian H., Zhu G., Peng X. 2007: Identification of aluminium-responsive genes in rice cultivars with different aluminum sensitives. J. Exp. Bot. 58: 2269-2278. https://doi.org/10.1093/jxb/erm110

Letöltések

Megjelent

2009-12-29

Folyóirat szám

Rovat

Áttekintő tanulmányok

Hogyan kell idézni

Vicia faba - Rhizobium leguminosarum szimbiotikus kapcsolata a talaj kémhatásának és alumínium koncentrációjának függvényében. (2009). TÁJÖKOLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 7(2), 301-318. https://doi.org/10.56617/tl.4114

Hasonló cikkek

161-170 a 499-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.