Kétértékű alkálifémek hatása az élesztősejtek szaporodására, nehézfémekkel szennyezett talajban

Szerzők

  • Bayoumi Hamuda, Hosam E.A.F. Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet, 1034 Budapest, Doberdó út 6.
  • Tóth Nikolett Szent István Egyetem, Környezettudományi Doktori Iskola. 2100 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.3783

Kulcsszavak:

alkáli- és nehézfémek, Saccharomyces cerevisiae, szaporodás, toxicitás, talajszennyezés

Absztrakt

A mikroorganizmusok tulajdonságai nagyon jól hasznosíthatóak a talajszennyezés monitorozásánál. A toxikus nehézfémek komoly ökológiai problémát jelentenek környezetünkben, ezért kiemelkedő fontosságú a nehézfémekkel szennyezett talajok tisztítása. In vitro, két S. cerevisiae törzs (NSS5099 és NSS7002) nehézfémekkel szembeni toleranciáját vizsgáltuk. A két törzs szaporodási kinetikáját olyan táptalajon tanulmányoztuk, amelyhez 50 μM koncentrációban adtunk Cu2+-, Pb2+-, Cd2+- vagy Ni2+-ionokat. A vizsgált nehézfémek élesztőtörzsekre gyakorolt toxicitása csökkenő sorrendben: Cu2+ > Pb2+ > Cd2+ > Ni2+. A 350 μM koncentrációjú Cu2+, Pb2+ vagy Cd2+ és 450 μM koncentrációjú Ni2+ 48 órás inkubációt követően 50%-kal csökkentette az élősejtek számát. Amikor a nehézfémek táptalajba történő adagolása előtt 50 mM Ca(HCO3)2, 75 mM MgSO4, vagy 150 mM K2SO4-ot adtunk a közeghez csökkent a nehézfémek sejtekre gyakorolt toxicitása, és több sejt maradt életben. A 350 és 450 μM koncentrációban lévő nehézfémek toxicitását a fémsók 40%-kal csökkentették. A kapott eredmények alapján az NSS7002 törzs sokkal alkalmasabbnak bizonyult a nehézfémekkel szennyezett talajok tisztítására, mint az NSS5099.

Információk a szerzőről

  • Bayoumi Hamuda, Hosam E.A.F. , Óbudai Egyetem, Rejtő Sándor Könnyűipari és Környezetmérnöki Kar, Környezetmérnöki Intézet, 1034 Budapest, Doberdó út 6.

    levelező szerző
    hosameaf@gmail.com

Hivatkozások

Akhtar N., Iqbal J., Iqbal M. 2004: Removal and recovery of nickel (II) from aqueous solution by loofa spongeimmobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater. 108: 85−94. https://doi.org/10.1016/j.jhazmat.2004.01.002

Avery S.V., Tobin J.M. 1993: Mechanisms of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Microbiol., 59: 2851−2856. https://doi.org/10.1128/aem.59.9.2851-2856.1993

Avery S.V., Howlett N.G., Radice S. 1996: Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960−3966. https://doi.org/10.1128/aem.62.11.3960-3966.1996

Bender J., Phillips P. 2004: Microbial mats for multiple applications in aquaculture and bioremediation. Biores. Technol. 94: 229−238. https://doi.org/10.1016/j.biortech.2003.12.016

Borst-Pauwels G., Theuvenet A. 1984: Apparent saturation kinetics of divalent cation uptake in yeast caused by a reduction in the surface potential. Biochem. Biophys. Acta 771: 171−176. https://doi.org/10.1016/0005-2736(84)90529-7

Blackwell K.J., Tobin J.M., Avery S.V. 1997: Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 47: 180−184. https://doi.org/10.1007/s002530050909

Blackwell K.J., Tobin J.M., Avery S.V. 1998: Manganese toxicity towards Saccharomyces cerevisiae: Dependence on intracellular and extracellular magnesium concentrations. Appl. Microbiol. Biotechnol. 49: 751−757. https://doi.org/10.1007/s002530051242

Brady D., Duncan J.R. 1994: Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 34: 149−154. https://doi.org/10.1007/BF00166098

Brady D., Glaum D., Duncan J.R. 1994: Copper tolerance in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 18: 245−250. https://doi.org/10.1111/j.1472-765X.1994.tb00860.x

Can C., Jianlong W. 2007: Correlating metal ion characteristics with biosorption capacity using QSAR model. Chemosphere 69: 1610−1616. https://doi.org/10.1016/j.chemosphere.2007.05.043

Chen C.M, Wang J. 2007: Response of Saccharomyces cerevisiae to lead ion stress. Appl. Microbiol. Biotechnol. 74: 683−687. https://doi.org/10.1007/s00253-006-0678-x

Chojnacka K. 2010: Biosorption and bioaccumulation-the prospects for practical applications. Environ. International 36: 299−307. https://doi.org/10.1016/j.envint.2009.12.001

Collins Y.E., Stotzky G. (1992): Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl. Environ. Microbiol. 58: 1592−1600. https://doi.org/10.1128/aem.58.5.1592-1600.1992

Davis T.A., Volesky B., Mucci A. 2003: A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311−4330. https://doi.org/10.1016/S0043-1354(03)00293-8

Dostalek P., Patzak M., Matejka P. 2004: Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. Intern. Biodeterior. Biodegr. 54: 203−207. https://doi.org/10.1016/j.ibiod.2004.03.013

El Aasar S.A. 2005: Adaptive tolerance of Trichoderma hamatum in cadmium, copper and lead heavy metals. Egypt J. Biotechnol. 21: 278−294.

Engl A., Kunz B. 1995: Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. J. Chem. Technol. Biotechnol. 63: 257−261. https://doi.org/10.1002/jctb.280630310

Gad S.A., Attia M., Ahmed A.H. 2010: Heavy Metals Bio-Remediation by Immobilized Saccharomyces cervisiae and Opuntia ficus indica Waste J. Am. Sci. 6: 79−87.

Gadd G.M. 1992: Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100: 197−204.

Gadd G.M. 1993: Interactions of fungi with toxic metals. New Phytol. 124: 25−60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x

Gadd G.M., Mowll J.L. 1983: The relationship between cadmium uptake, potassium release and viability in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 16: 45−48. https://doi.org/10.1111/j.1574-6968.1983.tb00256.x

Giller K.E., Witter E., Mcgrath S.P. 1997: Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol. Biochem. 29: 1389−1414. https://doi.org/10.1016/S0038-0717(97)00270-8

Gniewosz M., Duszkiewicz-Reinhard W., Blazejak S., Sobiecka J., Zarzecka M. 2007: Investigations into magnesium biosorption by waste brewery yeast Saccharomyces uvarum. Acta Sci. Pol., Technol. Ali- ment. 6: 57−67.

Goyal N., Jain S.C., Banerjee U.C. 2003: Comparative studies on the microbial adsorption of heavy metals. Adv. Environ. Res. 7: 311−319. https://doi.org/10.1016/S1093-0191(02)00004-7

Hiroki M. 1992: Effects of heavy metal contamination on soil microbial populations. Soil Sci. Plant Nutr. 38: 141−147. https://doi.org/10.1080/00380768.1992.10416961

Horvath J. 1970: Microbiology. Mezőgazdasági Kiadó, Budapest.

Huang C.P., Morehart A. 1990: The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res. 4: 433−439. https://doi.org/10.1016/0043-1354(90)90225-U

Jianlong W. 2002: Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 37: 847−380. https://doi.org/10.1016/S0032-9592(01)00284-9

Kambe-Honjoh H., Ohsumi K., Shimoi H., Nakajima H., Kitamoto K. 2000: Molecular breeding of yeast with higher metal-adsorption capacity by expression of histidine-repeat insertion in the protein anchored to the cell wall. J. Gen. Appl. Microbiol. 46: 113−117. https://doi.org/10.2323/jgam.46.113

Kapoor A., Viraraghavan T. 1997: Heavy metal biosorption sites in Aspergillus niger. Biores. Technol. 61: 221−227. https://doi.org/10.1016/S0960-8524(97)00055-2

Kuroda K., Shibasaki S., Ueda M., Tanaka A. 2001: Cell surface engineered yeast displaying a histidine oligopeptide (exa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 57: 697−701. https://doi.org/10.1007/s002530100813

Karamushka V.I., Gadd D.M., Gruzina T.G., Ul'berg Z.R. 1998: The application of colloid-biochemical pa- rameters of microbial cells for the assessment of heavy metal toxicity. Colloid J. Russ. Acad. Sci. 60: 717−720.

Liu X.F., Supek F., Nelsoni N., Culotta V.C. 1997: Negative control of heavy metal uptake by the Saccharomy- ces cerevisiae BSD2 Gene. J. Biol. Chem. 272: 11763−11769. https://doi.org/10.1074/jbc.272.18.11763

Lloyd J.R., Lovley D.R., Macaskie L.E. 2003: Biotechnological application of metal-reducing microorganisms. Adv. Appl. Microbiol. 53: 85−128. https://doi.org/10.1016/S0065-2164(03)53003-9

Lo W., Chua H., Lam K.H. 1999: A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723−2736. https://doi.org/10.1016/S0045-6535(99)00206-4

Lovely D.R., Coates J.D. 1997: Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285−289. https://doi.org/10.1016/S0958-1669(97)80005-5

Machado M.D., Janssens S., Soares H.M.V.M., Soares E.V. 2009: Removal of heavy metals using a brewer's yeast strain of S. cerevisiae: advantages of using dead biomass. J. Appl. Microbiol. 106: 1792−1804. https://doi.org/10.1111/j.1365-2672.2009.04170.x

Machado M.D., Santos M.S., Gouveia C., Soares H.M., Soares E.V. 2008: Removal of heavy metals using a brewar's yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Biores. Technol. 99: 2107−2115. https://doi.org/10.1016/j.biortech.2007.05.047

Malik A. 2004: Metal bioremediation through growing cells. Environ. Int. 30: 261−278. https://doi.org/10.1016/j.envint.2003.08.001

Mowll J.L., Gadd G.M. 1984: Cadmium uptake by Aureobasidium pullulans. J. Gen. Microbiol. 130: 279−284. https://doi.org/10.1099/00221287-130-2-279

Naeem A., Woertz J.R., Fein J.B. 2006: Experimental measurement of proton, Cd, Pb, Sr and Zn adsorption onto the fungal species Saccharomyces cerevisiae. Environ. Sci. Technol. 40: 5724−5729. https://doi.org/10.1021/es0606935

Nakamura H., Hirata Y., Mogi Y., Kobayashi S., Suzuki K., Hirayama T., Karube I. 2007: A simple and highly repeatable colorimetric toxicity assay method using 2,6-dichlorophenolindo-phenol as the redox color indicator and whole eukaryote cells. Anal. Bioanal. Chem. 389: 835−840. https://doi.org/10.1007/s00216-007-1527-1

Park J.K., Lee J.W., Jung J.Y. 2003: Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells. Enzyme Microbiol. Technol. 33: 371−378. https://doi.org/10.1016/S0141-0229(03)00133-9

Pasternakiewicz A. 2006: The growth of Saccharomyces cerevisiae yeast in cadmium enriched media. Acta Sci. Pol. Technol. Aliment. 5: 39−46.

Perkins J., Gadd G.M. 1993: Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 107: 255−260. https://doi.org/10.1111/j.1574-6968.1993.tb06039.x

Rehman A., Shakoori F.R., Shakoori A.R. 2008: Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Biores. Technol. 99: 3890−3895. https://doi.org/10.1016/j.biortech.2007.08.007

Ringot D., Lerzy B., Chaplain K., Bonhoure J.P., Auclair E., Larondele Y. 2007: In vitro biosorption of ochratoxin A on the yeast industry byproducts: Comparison of isotherm models. Biores. Technol. 98: 1812−1821. https://doi.org/10.1016/j.biortech.2006.06.015

Roomans G., Theuvenet A., Van Den Berg T., Borst-Pauwels G. 1979: Kinetics of Ca2+ and Sr2+ uptake by yeast. Effects of pH, cations and phosphate. Biochim. Biophys. Acta 551: 187−196. https://doi.org/10.1016/0005-2736(79)90364-X

Ruta L., Paraschivescu C., Matache M., Avramescu S., Farcasanu I.C. 2010: Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 85:763−771. https://doi.org/10.1007/s00253-009-2266-3

Saleem M., Brim H., Hussain S., Arshad M., Leigh M.B., Zia-Ul H. 2008: Perspectives on microbial cell sur- face display in bioremediation. Biotechnol. Adv. 26: 151−161. https://doi.org/10.1016/j.biotechadv.2007.10.002

Saltukoglu A., Slaughter J.C. 1983: The effect of magnesium and calcium on yeast growth. J. Inst. Brew. 89: 81−83. https://doi.org/10.1002/j.2050-0416.1983.tb04151.x

Shibasaki S., Maeda H., Ueda M. 2009: Molecular display technology using yeast-arming technology. Anal. Sci. 25: 41−49. https://doi.org/10.2116/analsci.25.41

Singleton I., Simmons P. 1996: Factors affecting silver biosorption by and industrial strain of Saccharomyces cerevisiae. J. Chem. Tech. Biotechnol. 65: 21−28. https://doi.org/10.1002/(SICI)1097-4660(199601)65:1<21::AID-JCTB382>3.0.CO;2-E

Soares E.V., Hebbelinck K., Soares H.M.V.M. 2003: Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can. J. Microbiol. 49: 336−343. https://doi.org/10.1139/w03-044

Suh J.H., Kim D.S., Yun J.W., Song S.K. 1998: Process of Pb2+ accumulation in Saccharomyces cerevisiae. Biotecnol. Lett. 20: 153−156. https://doi.org/10.1023/A:1005376424157

Tuszynski T., Pasternakiewicz A. 2000: Bioaccumulation of metal ions by yeast cell of Saccharomyces cerevisiae. Pol. J. Food Nutr. Sci. 4: 31−39.

Veglio F., Beolchini F. 1997: Removal of metals by biosorption. Hydrometallurgy 44: 301−316. https://doi.org/10.1016/S0304-386X(96)00059-X

Volesky B., Phillips H.A. 1995: Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797−806. https://doi.org/10.1007/BF00171964

Wang J., Chen C. 2006: Biosorption of heavy metals by Saccharomyces cerevisiae. Biotechnol. Adv. 24: 427−451. https://doi.org/10.1016/j.biotechadv.2006.03.001

White C., Gadd G.M. 1987: The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J. Gen. Microbiol. 133: 727−737. https://doi.org/10.1099/00221287-133-3-727

Wang J., Chen C. 2009: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195−226. https://doi.org/10.1016/j.biotechadv.2008.11.002

Zouboulis A. I., Matis K. A., Lazaridis N.K. 2001: Removal of metal ions from simulated wastewater by Saccharomyces yeast biomass: combining biosorption and flotation processes. Separation Sci. Technol., 36: 349−365. https://doi.org/10.1081/SS-100102932

Letöltések

Megjelent

2012-12-10

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Kétértékű alkálifémek hatása az élesztősejtek szaporodására, nehézfémekkel szennyezett talajban. (2012). TÁJÖKÖLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 10(2), 195-208. https://doi.org/10.56617/tl.3783

Hasonló cikkek

1-10 a 484-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.