Possibilities of UAV based identification and Monitoring Of Common Milkweed (Asclepias syriaca L.)
DOI:
https://doi.org/10.56617/tl.4948Keywords:
Asclepias syriaca, biological invasion, drone (UAV), geographic information system, image processing, remote sensing, vegetation indicesAbstract
Invasive species cause serious and often irreversible damage to biodiversity and ecosystem services, which are essential for human survival and can also be a public health problem due to their pollen. Both the defense against them, and the economic and nature conservation damage caused by them result in enormous costs worldwide. To manage invasive species effectively, we need to know their current distribution, the dynamics of their spread, and their exact impact on ecosystems, habitats, and the economy. Nowadays, the most efficient way to collect this information from large areas is by drones (UAV – unmanned aerial vehicle). Semi-natural grasslands have significant biodiversity and provide important ecosystem services, but these habitats are also vulnerable to damage by invasive species. Hungary's Pannonian sand grasslands are threatened by the spread of many invasive species. From these, we mapped and monitored the common milkweed (Asclepias syriaca L.) as it is one of the most common and dangerous invasive species on the Southern Great Plain region. As the conservation management of invasive plant species is based on the approach and methods of agricultural weed control, this study can be evaluated as a methodological development of the adaptation of monitoring procedures used in agriculture. Our aim was to examine whether vegetation indices used in precision agriculture are suitable for the identification of individual common milkweed stands and their sizes. Therefore, in our study we examined vegetation indices (TGI, VARI, NDVI and SAVI) derived from aerial images taken with UAVs (RGB and CIR). The drone-based survey and mapping of milkweed was carried out on two regenerating fields adjacent to the Kolon Lake central area of the Kiskunság National Park in July 2020. According to our results, TGI proved to be the most suitable index for milkweed shoots and individual-level identification. NDVI and SAVI indices were less suitable than the TGI for determining of milkweed coverage and shoot number, however, they may be suitable for determining the effectiveness of nature conservation treatments. Our results provide a simple, fast, cost-effective, and minimally destructive method for mapping large-scale populations of invasive species for repeated monitoring. Thus, it can provide nature conservation with information that allows accurate planning of defense against invasion and monitoring of the effectiveness of treatments in the future.
References
Bagi, I. 2008: Common milkweed (Asclepias syriaca L.). In: Botta-Dukát, Z., Balogh, L. (eds.) The Most Important Invasive Plants in Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót. pp. 151–159.
Bagi I., Bakacsy L. 2012: Közönséges selyemkóró (Asclepias syriaca). In: Csiszár Á. (szerk.): Inváziós növényfajok Magyarországon. Nyugat-magyarországi Egyetem Kiadó, Sopron. pp. 183–187.
Bakacsy, L. 2019: Invasion impact is conditioned by initial vegetation states. Community Ecology 20: 11–19. DOI: https://doi.org/10.1556/168.2019.20.1.2
Bakacsy, L. 2021: A közönséges selyemkóró (Asclepias syriaca L.) inváziójának vizsgálata és az ellene való védekezés lehetősége nyílt homokgyepekben. PhD értekezés. SZTE TTIK Biológia Intézet, Szeged. p. 135. DOI: https://doi.org/10.14232/phd.10952
Bakacsy, L., Bagi, I. 2020: Survival and regeneration ability of clonal common milkweed (Asclepias syriaca L.) after a single herbicide treatment in natural open sand grasslands. Scientific Reports 10: 1–10. DOI: https://doi.org/10.1038/s41598-020-71202-8
Bakó G. 2013: Vegetációtérképezés nagyfelbontású valósszínes-és multispektrális légifelvételek alapján. Kitaibelia 18: 152–160.
Bakó G. 2015: Az özönnövények feltérképezése a beavatkozás megtervezéséhez és precíziós kivitelezéséhez. In: Csiszár Á., Korda M. (szerk.) Özönnövények visszaszorításának gyakorlati tapasztalatai. Duna-Ipoly Nemzeti Park Igazgatóság, Budapest. pp. 17–25.
Bakó G. 2019: Nagy terepi felbontású és frekvenciájú légi felmérésen alapuló monitoring-hálózat kiépítési módszertana. Tájökológiai Lapok 17: 61–74. DOI: https://doi.org/10.56617/tl.3465
Bolch, E.A., Santos M.J., Ade, C., Khanna, S., Basinger, N.T., Reader, M.O., Hestir, E.L. 2020: Remote detection of invasive alien species. In: Cavender-Bares, J., Gamon, J.A., Townsend, P.A. (eds.) Remote Sensing of Plant Biodiversity. Springer Nature, Cham. pp. 267–307. DOI: https://doi.org/10.1007/978-3-030-33157-3
Borsicky I. 2018: Szenzor technikára alapozott helyspecifikus gyomszabályozás hatása a szántóföldi gyomflóra változására. PhD értekezés. SZE MÉK, Mosonmagyaróvár. p. 189.
Bölöni J., Molnár Z., Kun A. 2011: Magyarország élőhelyei: vegetációtípusok leírása és határozója: ÁNÉR 2011. MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót. p. 439.
CABI. (Commonwealth Agricultural Bureau International). 2011: Asclepias syriaca (common milkweed). http://www.cabi.org/isc/datasheet/7249 (accessed 05. 04. 2015)
Cruzan, M.B., Weinstein, B.G., Grasty, M.R., Kohrn, B.F., Hendrickson, E.C., Arredondo, T.M., Thompson, P.G. 2016: Small unmanned aerial vehicles (micro‐UAVs, drones) in plant ecology. Applications in plant sciences 4: 1600041. DOI: https://doi.org/10.3732/apps.1600041
Csecserits A., Halassy M., Rédei T., Szitár K., Botta-Dukát Z. 2020: A selyemkóró (Asclepias syriaca L.) tömegességének változásai homoki parlagokon szukcesszió és természetvédelmi kezelés hatására. Természetvédelmi közlemények 26: 1–15. DOI: https://doi.org/10.20332/tvk-jnatconserv.2020.26.1
de Sá, N.C., Castro, P., Carvalho, S., Marchante, E., López-Núñez, F.A., Marchante, H. 2018: Mapping the flowering of an invasive plant using unmanned aerial vehicles: is there potential for biocontrol monitoring? Frontiers in Plant Science 9: 293. DOI: https://doi.org/10.3389/fpls.2018.00293
Dvořák, P., Müllerová, J.,Bartaloš, T., Brůna, J. 2015: Unmanned aerial vehicles for alien plant species detection and monitoring. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40. DOI: https://doi.org/10.5194/isprsarchives-XL-1-W4-83-2015
EPPO. 2019: The European and Mediterranean Plant Protection Organization. EPPO Global Database (available online). https://gd.eppo.int ,https://gd.eppo.int/taxon/ASCSY
Európai Bizottság. 2014: Regulation (EU) No 1143/2014 of the European Parliament and of the Council October 22 2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union L174:511. https://publications.europa.eu/en/publication-detail/-/publication/880597b7-63f6-11e4-9cbe01aa75ed71a1/lan-guage-en
Európai Bizottság. 2017: List of Invasive Alien Species of Union concern. http://ec.europa.eu/environment/nature/invasivealien/list/index_en.htm
Follak, S., Bakacsy L., Essl, F., Hochfellner, L., Lapin, K., Schwarz, M., Tokarska-Guzik, B., Wołkowycki, D. 2021: Monograph of invasive plants in Europe N° 6: Asclepias syriaca L. Botany Letters 1–30. DOI: https://doi.org/10.1080/23818107.2021.1886984
Feret, J.B., François, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P.R., Ustin S.L., le Maire G., Jacquemoud, S. 2008: PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote sensing of environment 112: 3030-3043. DOI: https://doi.org/10.1016/j.rse.2008.02.012
Fuentes-Peailillo, F., Ortega-Farias, S., Rivera, M., Bardeen, M., Moreno, M. 2018, October: Comparison of vegetation indices acquired from RGB and multispectral sensors placed on UAV. In: 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA) (pp. 1–6). IEEE. DOI: https://doi.org/10.1109/ICA-ACCA.2018.8609861
Gitelson, A.A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., Derry, D. 2002: Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing 23: 2537–2562. DOI: https://doi.org/10.1080/01431160110107806
GRIIS. 2017: The Global Register of Invasive Species. http://www.griis.org/search3.php
Hill, D.J.,Tarasoff, C., Whitworth, G.E., Baron, J., Bradshaw, J.L., Church, J.S. 2017: Utility of unmanned aerial vehicles for mapping invasive plant species: a case study on yellow flag iris (Iris pseudacorus L.). International Journal of Remote Sensing 38: 2083–2105. DOI: https://doi.org/10.1080/01431161.2016.1264030
Huete, A.R. 1988: A soil-adjusted vegetation index (SAVI). Remote sensing of environment 25: 295–309. DOI: https://doi.org/10.1016/0034-4257(88)90106-X
Huete, A.R., Liu, H.Q., Batchily, K.V., Van Leeuwen, W.J.D.A. 1997: A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of environment 59: 440–451. DOI: https://doi.org/10.1016/S0034-4257(96)00112-5
Hunt, Jr,E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S., Perry, E.M., Akhmedov, B. 2013: A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation 21: 103–112. DOI: https://doi.org/10.1016/j.jag.2012.07.020
Inderjit, S. 2005: Invasive plants: Ecological and agricultural aspects. Springer Science and Business Media. p. 286. DOI: https://doi.org/10.1007/3-7643-7380-6
IUCN. 2011: International Union for Conservation of Nature. http://www.iucn.org/about/union/secretrait/offices/iucnmed/iucn_med_ programme/species/invasive_species/
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., Ustin, S.L. 2009: PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment 113: S56-S66. DOI: https://doi.org/10.1016/j.rse.2008.01.026
Kelemen, A., Valkó, O., Kröel‐Dulay, G., Deák, B., Török, P., Tóth, K., Miglécz, T., Tóthmérész, B. 2016: The invasion of common milkweed (Asclepias syriaca) in sandy old‐fields – is it a threattothenativeflora? Applied Vegetation Science 19: 218–224. DOI: https://doi.org/10.1111/avsc.12225
Kettunen, M., Genovesi, P., Gollasch, S., Pagad, S., Starfinger, U., ten Brink, P., Shine, C. 2009: Technical support to EU strategy on invasive alien species (IAS). Institute for European Environmental Policy (IEEP), Brussels. p. 44.
Kitka D., Szilassi P. 2016: Két özönnövény elterjedtségét befolyásoló földrajzi tényezők vizsgálata geoinformatikai módszerekkel a Dél-Alföldi Régió példáján. Tájökológiai Lapok 14: 155–169. DOI: https://doi.org/10.56617/tl.3647
Kunah, O.M., Papka, O.S. 2016: Ecogeographical determinants of the ecological niche of the common milkweed (Asclepias syriaca) on the basis of indices of remote sensing of land images. Biosystems Diversity 24: 78-86. DOI: https://doi.org/10.15421/011609
Lehmann, J.R., Prinz, T., Ziller, S.R., Thiele, J., Heringer, G., Meira-Neto, J.A., Buttschardt, T.K. 2017: Open- source processing and analysis of aerial imagery acquired with a low-cost unmanned aerial system to support invasive plant management. Frontiers in Environmental Science 5: 44. DOI: https://doi.org/10.3389/fenvs.2017.00044
Michez, A., Piégay, H., Jonathan, L., Claessens, H., Lejeune, P. 2016: Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery. International Journal of Applied Earth Observation and Geoinformation 44: 88–94. DOI: https://doi.org/10.1016/j.jag.2015.06.014
Müllerová, J.,Bartaloš, T., Brůna, J., Dvořák, P., Vítková, M. 2017: Unmanned aircraft in nature conservation: an example from plant invasions. International Journal of Remote Sensing 38: 2177–2198. DOI: https://doi.org/10.1080/01431161.2016.1275059
Niphadkar, M., Nagendra, H. 2016: Remotesensing of invasive plants: incorporating functional traitsin to the picture. International Journal of Remote Sensing 37: 3074–3085. DOI: https://doi.org/10.1080/01431161.2016.1193795
Papp, L., Van Leeuwen, B., Szilassi, P., Tobak, Z., Szatmári, J., Árvai, M., Mészáros, J., Pásztor, L. 2021: Monitoring invasive plant species using hyperspectral remote sensing data. Land 10: 29. DOI: https://doi.org/10.3390/land10010029
Pimentel, D., Zuniga, R., Morrison, D. 2005: Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological economics 52: 273–288. DOI: https://doi.org/10.1016/j.ecolecon.2004.10.002
Quantum GIS Development Team. 2018: Quantum GIS geographic information system. Open Source Geospatial Foundation Project. Online hozzáférhető: http://qgis.osgeo.org (2018 Szeptember 15.)
Richardson, D.M., Pyšek, P., Rejmánek, M., Barbour, M.G., Panetta, F.D., West, C.J. 2000: Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions 6: 93–107. DOI: https://doi.org/10.1046/j.1472-4642.2000.00083.x
Schiffleithner, V., Essl, F. 2016: Is it worth the effort? Spread and management success of invasive alien plant species in a Central European National Park. NeoBiota 31: 43. DOI: https://doi.org/10.3897/neobiota.31.8071
Schneider, C.A., Rasband, W.S., Eliceiri, K.W. 2012: NIH Image to ImageJ: 25 years of image analysis. Nature methods 9: 671–675. DOI: https://doi.org/10.1038/nmeth.2089
Sipos, G., Tóth, O., Pécsi, E., Bíró, C. 2014: Bracketing the age of freshwater carbonate formation by OSL dating near Lake Kolon, Hungary. Journal of Environmental Geography 7: 53–59. DOI: https://doi.org/10.2478/jengeo-2014-0012
Smith, R.G., Maxwell, B.D., Menalled, F.D., Rew, L.J. 2006: Lessons from agriculture may improve the management of invasive plants in wildland systems. Frontiers in Ecology and the Environment 4: 428–434. DOI: https://doi.org/10.1890/1540-9295(2006)4[428:LFAMIT]2.0.CO;2
Szatmári, J., Tobak, Z., Novák, Z. 2016: Environmental monitoring supported by aerial photography – a case study of the burnt down Bugac juniper forest, Hungary. Journal of Environmental Geography 9: 31–38. DOI: https://doi.org/10.1515/jengeo-2016-0005
Szigetvári C. 2002: Az invazív késeiperje, Cleistogenes serotina (L.) Keng. szerepe nyílt homokgyepek társulásszerveződésében. Kitaibelia 7: 119–139.
Szilassi, P., Szatmári, G., Pásztor, L., Árvai, M., Szatmári, J., Szitár, K., Papp, L. 2019: Understanding the environmental background of an invasive plant species (Asclepias syriaca) for the future: an application of LUCAS field photographs and machine learning algorithm methods. Plants 8: 593. DOI: https://doi.org/10.3390/plants8120593
Szilassi, P., Soóky, A., Bátori, Z., Hábenczyus, A. A., Frei, K., Tölgyesi, C., Van Leeuwen, B., Tobak, Z., Csikós, N. 2021: Natura 2000 Areas, Road, Railway, Water, and Ecological Networks May Provide Pathways for Biological Invasion: A Country Scale Analysis. Plants 10: 2670. DOI: https://doi.org/10.3390/plants10122670
Szilassi P., Tobak Z., Van Leeuwen, B., Szatmári J., Kitka D. 2017: A szárazodással kapcsolatos földrajzi tényezők és egy özönnövény terjedése közti kapcsolat vizsgálata a dél-alföldi régió területén. Földrajzi Közlemények 141: 30–43.
Szitár, K., Kröel‐Dulay, G., Török, K. 2018: Invasive Asclepia ssyriaca can have facilitative effects on native grass establishment in a water‐stressed ecosystem. Applied Vegetation Science 21: 607–614. DOI: https://doi.org/10.1111/avsc.12397
Szitár, K., Ónodi, G., Somay, L., Pándi, I., Kucs, P., Kröel-Dulay, G. 2014: Recovery of inland sand dune grasslands following the removal of alien pine plantation. Biological Conservation 171: 52–60. DOI: https://doi.org/10.1016/j.biocon.2014.01.021
Szitár, K., Ónodi, G., Somay, L., Pándi, I., Kucs, P., Kröel-Dulay, G. 2016: Contrasting effects of land use legacies on grassland restoration in burnt pine plantations. Biological Conservation 201: 356–362. DOI: https://doi.org/10.1016/j.biocon.2016.08.004
Tóth K. 1996: 20 éves a Kiskunsági Nemzeti Park 1975–1995. Kiskunság Nemzeti Park Igazgatóságának kiadványa, Kecskemét. p. 234.
Tucker, C. J. 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment 8: 127–150. DOI: https://doi.org/10.1016/0034-4257(79)90013-0
Wijesingha, J., Astor, T., Schulze-Brüninghoff, D., Wachendorf, M. 2020: Mapping Invasive Lupinus polyphyllus Lindl. in semi-natural grasslands using object-based image analysis of UAV-borne images. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 1–16. DOI: https://doi.org/10.1007/s41064-020-00121-0
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Bakacsy László, Szatmári József, Biró Csaba, Tobak Zalán, Boudewijn Van Leeuwen, Szilassi Péter
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).