Analysis of fire-risk conditions in Pinus nigra stands by using McArthur’s model

Authors

  • Imre Cseresnyés Department of Plant Taxonomy and Ecology, Loránd Eötvös University, Pázmány P. stny. 1/C, Budapest, H-1117, Hungary
  • Péter Csontos MTA-ELTE Research Group for Theoretical Biology and Ecology, Pázmány P. stny. 1/C, Budapest, H-1117, Hungary

DOI:

https://doi.org/10.56617/tl.4597

Keywords:

forest fire, Austrian pine, flame height, drought factor, rate of spread, fire danger index, spotting distance

Abstract

Austrian pine (Pinus nigra Arn.), an alien conifer in Hungary, forms highly flammable vegetation type due to the accumulation of needle litter. The flammability of these forests was indicated by the frequent fire events in Dunazug Mountains during the latest decades.
The fire-risk relations in Dunazug Mountains were examined by using of McArthur’s empirical model. If the amount of fuel, temperature, relative humidity, wind speed, degree of slope and drought factor are known, the fire danger index (FDI; which is the probability of combustion), flame height, rate of spread and spotting distance can be calculated. The actual value of drought factor was determined from the amount of last precipitation, the days since last rain and the Byram-Keetch Drought Index (BKDI).
It is known from our previous studies that the fuel reaches a maximum mass in the stand age class 60–80 years, therefore forest fires are expected mainly in this age class. BKDI values were already known from our previous studies for years between 1993 and 2002.
To analyse the daily maximum and the annual trend of drought factor we used the daily BKDI values and daily rainfall had fixed at Budapest-Lőrinc meteorological station from 1993 to 2002. The mean value of drought factor was five from January to May then began to increase in early June, showing its maximum (value 8) in August and September. Later the drought factor decreased continuously till the end of November, when it stabilized at value five. During the most droughty year (2000) the drought factor reached the highest possible value (10) in six decades.
It was also examined how the changing meteorological factors affect the fire-risk relations. One factor among six (amount of fuel, temperature, relative humidity, wind speed, degree of slope and drought factor) was changed within an appointed interval (while the other five parameters were kept constant) and its result on the four outgrowths of the model (FDI, flame height, rate of spread, spotting distance) was examined. We used the following fixed parameters: 30 °C temperature, 30% relative humidity, 30 km/h wind speed, 30 degree of slope and Drought Factor value 10. The fuel load (diameter less than 6 mm) has already known from our former research.
Our results show that the increase of temperature, wind speed and drought factor rise the FDI, flame height, rate of spread and spotting distance, while the increase of relative humidity has the opposite effect. The amount of fuel doesn’t influence the FDI, but its increase promotes the spread of fire and rises the flame height. The rate of spread is always much higher uphill than on flat ground or downhill. On an average summer day (when the mentioned fixed parameters prevail) the fire-risk is very high (FDI=24), the flame height is 9.19 m in the stand age class 60–80 years, the rate of spread is 4.19 km/h uphill and the spotting distance is 1.53 km. If the weather conditions become extreme (37 °C, 16% relative humidity, 55 km/h wind speed), the fire-risk rises also to extreme (FDI=90) similar to the Mediterranean regions.
The reliability of McArthur’s model was tested by analysing of experimental laboratory results originating from scientific literature. Our own results proved to be compatible with these data.

Author Biographies

  • Imre Cseresnyés, Department of Plant Taxonomy and Ecology, Loránd Eötvös University, Pázmány P. stny. 1/C, Budapest, H-1117, Hungary

    cseresnyes.imre@freemail.hu

  • Péter Csontos, MTA-ELTE Research Group for Theoretical Biology and Ecology, Pázmány P. stny. 1/C, Budapest, H-1117, Hungary

    cspeter@ludens.elte.hu

References

Agócs J. 1995: Az erdő égetése. Erdészeti Lapok 130: 153.

Bacsó N. 1958: Budapest és környékének éghajlata. In: Pécsi M. (szerk.): Budapest természeti képe. Akadémiai Kiadó, Budapest, pp. 355-418.

Bacsó N., Kakas J., Takács L. 1953: Magyarország éghajlata. Országos Meteorológiai Intézet, Budapest.

Bartholy J., Radics K. 2000: A szélenergia hasznosítás lehetőségei a Kárpát-medencében. Egyetemi Meteorológiai Füzetek 14, ELTE, Budapest.

Bódis J. 1993: A feketefenyő hatása nyílt dolomitsziklagyepre. Texturális változások. Bot. Közlem. 80: 129-139.

Borhidi A. 1956: Feketefenyveseink társulási viszonyai. Bot. Közlem. 46: 275-285.

Bussay A. 1995: Az erdőtűz és a meteorológiai tényezők közötti kapcsolatok. Erdészeti Lapok 130: 149.

Cseresnyés I. 2004: Dolomitra telepített feketefenyvesek avarproduktumának és tűzveszélyességének vizsgálata. Egyetemi szakdolgozat, ELTE, Budapest.

Cseresnyés I., Bózsing E., Csontos P. 2003: Erdei avar mennyiségének változása dolomitra telepített feketefenyvesekben. Természetvédelmi Közlemények 10: 37-49.

Csontos P., Horánszky A., Kalapos T., Lőkös L. 1996: Seed bank of Pinus nigra plantations in dolomite rock grassland habitats, and its implications for restoring grassland vegetation. Annls hist.-nat. Mus. natn. hung. 88: 69-77.

Csontos P., Tamás J., Kalapos T. 1998: A magbank szerepe a dolomitnövényzet regenerálódásában korábban feketefenyvessel borított területeken. In: Csontos P. (szerk.): Sziklagyepek szünbotanikai kutatása. Scientia Kiadó, Budapest, pp. 183-196.

Draskovits R., Kovács-Láng E. 1968: Mikroklimamessungen in Kalkstein- und Dolomitfelsenrasen. Ann. Univ. Sci. Budapest Sect. Biol. 9-10: 115-129.

Dunkel Z., Stollár A., Szabó T., Tiringer Cs. 1990: A területi párolgás meghatározása Magyarországon. Időjárás 94: 149-155.

Eberhardt R. W., Latham R. E. 2000: Relationships among vegetation, surficial geology and soil water content at the Pocono mesic till barrens. Journal of the Torrey Botanical Society 127: 115-124. https://doi.org/10.2307/3088689

Geleta F. 1995: Erdőtüzek okainak hatásvizsgálata. Erdészeti Lapok 130: 150.

Ghimessy L. 1995: Erdőtüzek és azok hatása erdeinkre. Erdészeti Lapok 130: 150-151.

Granström A. 1993: Spatial and temporal variation in lightning ignitions in Sweden. Journal of Vegetation Science 4: 737-744. https://doi.org/10.2307/3235609

Hartley M. J. 2002: Rationale and methods for conserving biodiversity in plantation forest. Forest Ecology and Management 155: 81-95. https://doi.org/10.1016/S0378-1127(01)00549-7

Horánszky A. 1996: Növénytársulástani, erdőgazdálkodási és természetvédelmi kérdések a Kis- és Nagy-Szénáson. Természetvédelmi Közlemények 3-4: 5-19.

Járó Z. 1996: Ökológiai vizsgálatok a Kis- és Nagy-Szénáson. Természetvédelmi Közlemények 3-4: 21-53.

Johnson E. A., Fryer G. I., Heathcott M. J. (1990): The influence of man and climate on frequency of fire in the interior wet belt forest, British Columbia. Journal of Ecology 78: 403-412. https://doi.org/10.2307/2261120

Johnson E. A., Larsen C. P. S. (1991): Climatically induced change in fire frequency in the southern Rockies. Ecology 72: 194-201. https://doi.org/10.2307/1938914

Kakas J. (szerk.): 1960 Magyarország éghajlati atlasza. Országos Meteorológiai Intézet. Akadémiai Kiadó, Budapest.

Kavvadias V. A., Alifragis D., Tsiontsis A., Brofas G., Stamatelos G. 2001: Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144: 113-127. https://doi.org/10.1016/S0378-1127(00)00365-0

Keetch J. J., Byram G. M. 1968: A Drought Index for Forest Fire Control. U.S.D.A. Forest Service Research Paper SE-38. Southeastern Forest Experiment Station, Asheville, NC.

Lopes A. M. G., Cruz M. G., Viegas D. X. 2002: FireStation - an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling & Software 17: 269-285. https://doi.org/10.1016/S1364-8152(01)00072-X

Lovász Gy., Majoros Gy. 1997: Magyarország természeti földrajza I. University Press, Pécs.

Millán M. M., Estrela M. J., Badenas C. 1998: Synoptic analysis of meteorological processes relevant to forest fire dynamics on the Spanish mediterranean coast. In: Moreno J. M. (ed.): Large forest fires. Backhuys Publishers, Leiden, pp. 1-30. https://doi.org/10.1175/1520-0450(1998)037<0083:MPRTFF>2.0.CO;2

Morandini F., Santoni P. A., Balbi J. H. 2001: The contribution of radiant heat transfer to laboratory-scale fire spread under the influences of wind and slope. Fire Safety Journal 36: 519-543. https://doi.org/10.1016/S0379-7112(00)00064-3

Morvan D., Dupuy J. L. 2001: Modelling of fire spread through a forest fuel bed using a multiphase formulation. Combustion and Flame 127: 1981-1994. https://doi.org/10.1016/S0010-2180(01)00302-9

Niklasson M., Granström A. 2000: Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81: 1484-1499. https://doi.org/10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2

Noble I. R., Bary G. A. V., Gill A. M. 1980: McArthur's fire-danger meters expressed as equations. Australian Journal of Ecology 5: 201-203. https://doi.org/10.1111/j.1442-9993.1980.tb01243.x

Országos Meteorológiai Szolgálat 1993-2002: Napi Időjárásjelentések.

Palik B. J., Mitchell R. J., Hiers J. K. 2002: Modelling silviculture after natural disturbance to sustain biodiversity in the Longleaf pine (Pinus palustris) ecosystem: balancing complexity and implementation. Forest Ecology and Management 155: 347-356. https://doi.org/10.1016/S0378-1127(01)00571-0

Pastor E., Zárate L., Planas, E., Arnaldos J. 2003: Mathematical models and calculation system for the study of wildland fire behaviour. Progress in Energy and Combustion Science 29: 139-153. https://doi.org/10.1016/S0360-1285(03)00017-0

Santoni P. A., Balbi J. H. 1998: Modelling of two-dimensional flame spread across a sloping fuel bed. Fire Safety Journal 31: 201-225. https://doi.org/10.1016/S0379-7112(98)00011-3

Simeoni A., Santoni P. A., Larini M., Balbi J. H. 2001: On the wind advection influence on the fire spread across a fuel bed: modelling by a semi-physical approach and testing with experiments. Fire Safety Journal 36: 491-513. https://doi.org/10.1016/S0379-7112(00)00063-1

Swetnam T. W. 1993: Fire history and climate change in giant sequoia groves. Science 262: 885-889. https://doi.org/10.1126/science.262.5135.885

Tamás J. 1997: A növényzet regenerálódása leégett feketefenyvesek helyén, dolomiton. Egyetemi szakdolgozat, ELTE, Budapest.

Tamás J. 2001a: A feketefenyvesek telepítése Magyarországon, különös tekintettel a dolomitkopárokra. Természetvédelmi Közlemények 9: 75-85.

Tamás J. 2001b: Tűz utáni szukcesszió vizsgálata feketefenyvesekben. Egyetemi doktori értekezés kézirata, ELTE, Budapest.

Tamás J. 2003: The history of Austrian pine plantations in Hungary. Acta Botanica Croatica 62: 147-158.

Tamás J., Csontos P. 1995: Comparative coenological studies folowing forest fires. Abstracts of the 7th European Ecological Congress, EURECO 95, August 20-25, Budapest, p. 244.

Tamás J., Csontos P. 1998: A növényzet tűz utáni regenerálódása dolomitra telepített feketefenyvesek helyén. In: Csontos P. (szerk.): Sziklagyepek szünbotanikai kutatása. Scientia Kiadó, Budapest, pp. 231-264.

Viegas D. X. 1998: Weather, fuel status and fire occurrence: predicting large fires. In: Moreno J. M. (ed.): Large forest fires. Backhuys Publishers, Leiden, pp. 31-48.

Viegas D. X., Bovio G., Ferreira A. D., Nosenzo A., Sol B. 1999: Comparative study of various methods of fire danger evaluation in Southern Europe. International Journal of Wildland Fire 9: 235-246. https://doi.org/10.1071/WF00015

Viegas D. X., Neto L. P. C. 1991: Wall shear-stress as a parameter to correlate the rate of spread of a wind induced forest fire. International Journal of Wildland Fire 1: 177-188. https://doi.org/10.1071/WF9910177

Viegas D. X., Varela V. G. M., Borges C. P. 1994: On the evolution of a linear fire front in a slope. Proc. 2nd Int. Conf. on Forest Fire Research, Coimbra, Portugal, pp. 301-318.

Viegas D. X., Viegas M. T., Ferreira A. D. 1990: Characteristics of some forest fuels and their relation to the occurence of fires. Proc. 1st Int. Conf. on Forest Fire Research, Paper B.03, Coimbra, Portugal, 13.

Viegas D. X., Viegas M. T., Ferreira A. D. 1992: Moisture content of fine forest fuels and fire occurence in Central Portugal. International Journal of Wildland Fire 2: 69-86. https://doi.org/10.1071/WF9920069

Zackrisson O. 1977: Influence of forest fires on the North Swedish boreal forest. Oikos 29: 22-32. https://doi.org/10.2307/3543289

Zambó P. 1995: A Pilisi Parkerdő Rt. területén 1993-1994-ben bekövetkezett erdőtüzekről, a kár mértékéről és annak felszámolására tett erőfeszítésekről. Erdészeti Lapok 130: 152.

Published

2004-12-27

Issue

Section

Articles

How to Cite

Analysis of fire-risk conditions in Pinus nigra stands by using McArthur’s model. (2004). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 2(2), 231-252. https://doi.org/10.56617/tl.4597

Similar Articles

61-69 of 69

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>