Study of Arbuscular Mycorrhizal (AM) fungi under the pressure of monoculture and different crop rotations in a long term field experiment

Authors

  • Zita Sasvári Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, Microbiology and Environmental Toxicology Group H-2100 Gödöllő, Páter K. utca 1.
  • Franco Magurno Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, Microbiology and Environmental Toxicology Group H-2100 Gödöllő, Páter K. utca 1.
  • Katalin Posta Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, Microbiology and Environmental Toxicology Group H-2100 Gödöllő, Páter K. utca 1.

DOI:

https://doi.org/10.56617/tl.3801

Keywords:

arbuscular mycorrhiza, crop rotation, monoculture, maize (Zea mays L.), biodiversity

Abstract

Nowadays environmentally friendly crop production technologies more and more come to the fore, which ensure the reduction of the amount of fertilizer and pesticide while maintaining crop yield and quality. The arbuscular mycorrhizal (AM) fungi, that form symbioses with the majority of terrestrial plant species including a large proportion of cultivated plants, can play a significant role in this process. Different agricultural practices, such as mechanical disturbance, chemical fertilization and pesticide application can negatively affect the AM fungal community. Therefore, the objectives of our study were to assess the diversity of arbuscular mycorrhizal fungi (AMF) associated mainly with maize (Zea mays L.) in a long-term monoculture-based cultivation and various crop rotation systems (3 yrs alfalfa/5 yrs corn, 2 yrs wheat/2 yrs corn, and corn/spring barley/peas/ wheat [Norfolk type] crop rotation systems), established at Martonvásár by the Agricultural Research Institute of the Hungarian Research Academy of Sciences. Our investigations aimed to determine the number of AM fungal spores in 1 g of the rhizosphere soils of plants, to estimate mycorrhization percentages, to identify the mycorrhizal fungi actively colonizing the roots of plants by molecular techniques (amplifying a portion of AM fungal 18S rDNA by nested-PCR), and to reveal the phylogenetic relationships among the members of the AM fungal community.
In accord once with the literature the root colonization rates and also the AM fungal spore numbers changed with the progress of the vegetation period. In corn monoculture we found a relatively rich AMF community even after such an extreme and durable reduction of host plant diversity. Furthermore, significant differences in the composition of AMF communities were detected between the maize monocropping and the crop rotation systems.
The research was supported by the TÁMOP 4.2.2/B-10/1-2010-011 „Development of a complex educatio- nal assistance/support system for talented students and prospective researchers at the Szent István University” project and by grants from the National Research Council (OTKA K101878).

Author Biography

  • Zita Sasvári, Szent István University, Faculty of Agricultural and Environmental Sciences, Plant Protection Institute, Microbiology and Environmental Toxicology Group H-2100 Gödöllő, Páter K. utca 1.

    corresponding author
    Sasvari.Zita@mkk.szie.hu

References

Augé R. M., Toler H.D., Sams C. E., Nasim G. 2008: Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18(3): 115−121. https://doi.org/10.1007/s00572-008-0162-9

Azcón-Aguilar C., Barea J. M. 1996: Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - An overview of the mechanisms involved. Mycorrhiza 6(6): 457−464. https://doi.org/10.1007/s005720050147

Bainard L. D., Koch A. M., Gordon A. M., Klironomos J. N. 2012: Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biology and Biochemistry 45: 172−180. https://doi.org/10.1016/j.soilbio.2011.10.008

Bever J. D., Morton J.B., Antonovics J., Schultz P. A. 1996: Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84(1): 71−82. https://doi.org/10.2307/2261701

Carrenho R., Silva E.S., Trufem S. F. B., Bononi V. L.R. 2001: Successive cultivation of maize and agricultural practices on root colonization, number of spores and species of arbuscular mycorrhizal fungi. Brazilian Journal of Microbiology 32: 262−270. https://doi.org/10.1590/S1517-83822001000400002

Dumbrell A. J., Nelson M., Helgason T., Dytham C., Fitter A.H. 2010: Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4: 337−345. https://doi.org/10.1038/ismej.2009.122

Frank B. F. 1885: Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der deutschen botanischen Gesellschaft 3: 128−145.

Füzy A., Biró B., Tóth T., Hildebrandt J., Bothe H. 2008: Drought, but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. Journal of Plant Physiology 165(11): 1181−1192. https://doi.org/10.1016/j.jplph.2007.08.010

Gerdemann J. W., Nicolson T. H. 1963: Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46(2): 235−244. https://doi.org/10.1016/S0007-1536(63)80079-0

Gildon A., Tinker P. B. 1983: Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants: I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytologist 95(2): 247−261. https://doi.org/10.1111/j.1469-8137.1983.tb03491.x

Giovannetti M., Mosse B. 1980: An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84(3): 489−500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Hijri I., Sýkorová Z., Oehl F., Ineichen K., Mäder P., Wiemken A., Redeker D. 2006: Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology 15(8): 2277−2289. https://doi.org/10.1111/j.1365-294X.2006.02921.x

Hildebrandt U., Regvar M., Bothe H. 2007: Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1): 139−146. https://doi.org/10.1016/j.phytochem.2006.09.023

Ianson D. C., Allen M. F. (1986): The effects of soil texture on extraction of vesicular- arbuscular mycorrhizal fungal spores from arid sites. Mycologia 78(2): 164−168. https://doi.org/10.1080/00275514.1986.12025227

Jefwa J. M., Sinclair R., Maghembe J. A. 2006: Diversity of glomale mycorrhizal fungi in maize/sesbania intercrops and maize monocrop systems in southern Malawi. Agroforestry Systems 67(2): 107−114. https://doi.org/10.1007/s10457-004-2370-4

Kovács G. M., Balázs T., Pénzes Zs. 2007: Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (Botrychium virginianum, Ophioglossaceae). Mycorrhiza 17(7): 597−605. https://doi.org/10.1007/s00572-007-0137-2

Kovács M. G. 2008: Magyarországi növények mikorrhizáltsági vizsgálatainak összefoglalása. Mit mondhatnak ezek az adatok? Kitaibelia 13(1): 62−73.

Landwehr M., Hildebrandt U., Tóüth T., Biró B., Bothe H. 2002: The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12(4): 199−211. https://doi.org/10.1007/s00572-002-0172-y

Leyval C., Turnau K., Haselwandter K. 1997: Effect of heavy metal pollution on mycorrhizal colonization and function, physiological, ecological and applied aspects. Mycorrhiza 7(3): 139−153. https://doi.org/10.1007/s005720050174

Mathimaran N., Ruh R., Vullioud P., Frossard E., Jansa J. 2005: Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16(1): 61−66. https://doi.org/10.1007/s00572-005-0014-9

Miller M. A., Pfeiffer W., Schwartz T. 2010: Creating the CIPRES Science Gateway for inference of large phylogenetic trees, in: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp. 1−8. https://doi.org/10.1109/GCE.2010.5676129

Oehl F., Sieverding E., Ineichen K., Mäder P., Boller T., Wiemken A. 2003: Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology 69(5): 2816−2824. https://doi.org/10.1128/AEM.69.5.2816-2824.2003

Oehl F., Sieverding E., Ineichen K., Mäder P., Wiemken A., Boller T. 2009: Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agriculture, Ecosystems and Environment 134(3-4): 257−268. https://doi.org/10.1016/j.agee.2009.07.008

Oehl F., Sieverding E., Ineichhen K., Ris E. A., Boller T., Wiemken A. 2005: Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165(1): 273−283. https://doi.org/10.1111/j.1469-8137.2004.01235.x

Parniske M. 2008: Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6: 763−775. https://doi.org/10.1038/nrmicro1987

Plenchette C., Clermont-Dauphin C., Meynard J. M., Fortin J. A. 2005: Managing arbuscular mycorrhizal fungi in cropping systems. Canadian Journal of Plant Science 85(1): 31−40. https://doi.org/10.4141/P03-159

Pozo M. J., Azcón-Aguilar C. 2007: Unravelling mycorrhiza-induced resistance. Current Opinion in Plant Biology 10: 393−398. https://doi.org/10.1016/j.pbi.2007.05.004

Renker C., Weisshuhn K., Kellner H., Buscot F. 2006: Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza 16(8): 525−531. https://doi.org/10.1007/s00572-006-0067-4

Saito K., Suyama Y., Sato S., Sugawara K. 2004: Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences. Mycorrhiza 14(6): 363−373. https://doi.org/10.1007/s00572-003-0286-x

Smith S. E., Read D. J. 1997: Mycorrhizal Symbiosis, 2nd ed. Academic Press, London.

Smith S. E., Read D. J. 2008: Mycorrhizal Symbiosis, 3rd ed. Academic Press, London.

Szécsi Á., Kádár I., Szántó M. 1989: Endomikorrhiza gombák izolálása kukorica alól csernozjom talajon. Agrokémia és Talajtan 38: 429−438.

Takács T, Biró B., Vörös I. 2000: Kadmium, nikkel és cink hatása az arbuszkuláris mikorrhiza gombák faji diverzitására. Agrokémia és Talajtan 49(3−4): 465−476.

Takács T, Vörös I. 1998: Colonization of arbuscular endomycorrhizal fungi on maize affected by various N rates in long-term field experiment. Agrokémia és Talajtan 47(1−4): 289−296.

Vierheilig H., Coughlan A. P., Wyss U., Piche Y. 1998: Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology 64(12): 5004−5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998

Vierheilig H., Steinkellner S., Khaosaad T., Garcia-Garrido J. M. 2008: The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? Varma A.N. (3rd ed) Mycorrhiza. State of the Art, Genetics and Molecular Biology, ECO-function, Biotechnology, ECO-physiology, Structure and Systematics, Springer-Verlag Berlin and Heidel- berg GmbH & Co. K. pp. 307−320. https://doi.org/10.1007/978-3-540-78826-3_15

Published

2012-12-10

Issue

Section

Articles

How to Cite

Study of Arbuscular Mycorrhizal (AM) fungi under the pressure of monoculture and different crop rotations in a long term field experiment. (2012). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 10(2), 351-360. https://doi.org/10.56617/tl.3801

Similar Articles

11-20 of 29

You may also start an advanced similarity search for this article.