Shaing efficiency of different urban tree species – ivestigation of popular urban shadetrees in Szeged, Hungary

Authors

  • Ágnes Takács University of Szeged, Department of Climatology and Landscape Ecology 6722–Szeged, Egyetem Str. 2.
  • Márton Kiss University of Szeged, Department of Climatology and Landscape Ecology 6722–Szeged, Egyetem Str. 2.
  • Ágnes Gulyás University of Szeged, Department of Climatology and Landscape Ecology 6722–Szeged, Egyetem Str. 2.
  • Noémi Kántor University of Szeged, Department of Climatology and Landscape Ecology 6722–Szeged, Egyetem Str. 2.

DOI:

https://doi.org/10.56617/tl.3637

Keywords:

urban ecology, urban tree, shading effect, transmissivity

Abstract

Trees provide several beneficial services for the residents in urban ecosystems. By interception of stormwater, they reduce the risk of flood events; improve the air quality by filtering out air pollutants, as well as they enhance the well-being of citizens due to their aesthetical value and microclimate regulation services. Several studies, based on field measurements or numerical simulations, have already demonstrated that trees have major potential to mitigate the level of human heat stress, first and foremost due to their shade. The efficiency of shadowing, i.e. the sunshine reduction can be characterized with the tree canopy transmissivity (solar permeability), which varies not only among species but depends also on the annual change of the foliage as well as its health conditions. There is a lack of knowledge concerning the bioclimatic effect of urban forestry and single trees in Central-European climate conditions. Therefore the aim of this study is to investigate the solar radiation reduction capacity of four species used frequently as urban trees in Hungarian towns: small-leaved linden – Tilia cordata, pagoda tree – Sophora japonica, common hackberry – Celtis occidentalis, as well as horse-chestnut – Aesculus hippocastanum. We have considerably little knowledge about the small-scale microclimatic effects of urban trees among Central European circumstances. With our work, we would like to aid future studies, therefore, we put an emphasis on discussing methodological issues of measurements practical implementation.

Author Biography

  • Ágnes Takács, University of Szeged, Department of Climatology and Landscape Ecology 6722–Szeged, Egyetem Str. 2.

    corresponding author
    takacsagi@geo.u-szeged.hu

References

Andrade H., Vieira R. 2007: A climatic study of an urban green space: The Gulbenkian park in Lisbon (Portugal). Finisterra 42: 27–46. https://doi.org/10.18055/Finis1420

Balogun A.A., Morakinyo T.E., Adegun O.B. 2014: Effect of tree-shading on energy demand of two similar buildings. Energy and Buildings 81: 305–315. https://doi.org/10.1016/j.enbuild.2014.05.046

Bowler D.E., Buyung-Ali L., Knight T.M., Pullin A.S. 2010: Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning 97: 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006

Breuste J., Qureshi S., Li J. 2013: Scaling down the ecosystem services at local level for urban parks of three megacities. Hercynia 46: 1–20.

Cao X., Onishi A., Chen J., Imura H. 2010: Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning 96: 224–231. https://doi.org/10.1016/j.landurbplan.2010.03.008

Dobbs C., Escobedo F.J., Zipperer W.C. 2011: A framework for developing urban forest ecosystem services and goods indicators. Landscape Urban Planning 99: 196–206. https://doi.org/10.1016/j.landurbplan.2010.11.004

Égerházi L.A., Kántor N., Gál T. 2013: Evaluation and modelling the micro-bioclimatological conditions of a popular playground in Szeged, Hungary. International Review of Applied Sciences and Engineering 4: 57−61. https://doi.org/10.1556/irase.4.2013.1.8

Égerházi L.A., Kovács A., Takács Á., ÉGERHÁZI L. 2014: Comparison of the results of two micrometeorological models and measurements. Acta Climatologica et Chorologica Universitatis Szegediensis 47−48: 33–42.

Erell E., Pearlmutter D., Williamson T. 2011: Urban microclimate: Designing the spaces between buildings. Earthscan, London. https://doi.org/10.4324/9781849775397

Európai Bizottság 2011: Életbiztosításunk, természeti tőkénk: a biológiai sokféleséggel kapcsolatos, 2020-ig teljesítendő uniós stratégia. – COM (2011) 244, Brüsszel, 19 pp.

Haase D., Larondelle N., Andersson E., Artmann M., Borgström S., Breuste J., Gomez-Baggethun E., Gren A., Hamstead Z., Hansen R., Kabisch N., Kremer P., Langemeyer J., Rall E.L., Mcphearson T., Pauleit S., Qureshi S., Schwarz N., Voigt A., Wurster D., Elmqvist T. 2014: A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio A Journal of the Human Environment 43: 413–433. https://doi.org/10.1007/s13280-014-0504-0

Kántor N., Unger J. 2011: The most problematic variable in the course of human-biometeorological comfort assessment – the mean radiant temperature. Central European Journal of Geosciences 3: 90–100. https://doi.org/10.2478/s13533-011-0010-x

Kántor N., Kovács A., Takács Á. 2016: Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences 8: 231–245. https://doi.org/10.1515/geo-2016-0021

Lin B.S., Lin Y.J. 2010: Cooling Effect of Shade Trees with Different Characteristics in a Subtropical Urban Park. HortScience 45: 83–86. https://doi.org/10.21273/HORTSCI.45.1.83

Lovell S.T., Taylor J.R. 2013: Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecology 28: 1447–1463. https://doi.org/10.1007/s10980-013-9912-y

Madureira H., Andresen T. 2014: Planning for multifunctional urban green infrastructures: Promises and challenges. Urban Design International 19: 38–49. https://doi.org/10.1057/udi.2013.11

Mayer H. 2008: KLIMES – a joint research project on human thermal comfort in cities. Berichte des Meteorologischen Institutes der Universität Freiburg 17: 101–117.

Mayer H., Holst J., Dostal P., Imbery F., Schindler D. 2008: Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift 17: 241–250. https://doi.org/10.1127/0941-2948/2008/0285

Mezősi G., Mucsi L., Rakonczai J., Géczi R. 2007: A városökológia fogalma, néhány elméleti kérdése. In: Mezősi G. (szerk.): Városökológia. Földrajzi Tanulmányok I. JATEPress, Szeged, pp. 9–17.

Nouri H., Beecham S., Kazemi F., Hassanli A.M., Anderson S. 2013: Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Hydrology and Earth System Sciences 10: 3897–3925. https://doi.org/10.5194/hessd-10-3897-2013

Nowak D.J., Hirabayashi S., Bodine A., Greenfield E. 2014: Tree and forest effects on air quality and human health in the United States. Environmental Pollution 193: 119–129. https://doi.org/10.1016/j.envpol.2014.05.028

Perrings C., Duraiappah A., Larigauderie A., Mooney H. 2011: The Biodiversity and Ecosystem Services Science-Policy Interface. Science 331: 1139–1140. https://doi.org/10.1126/science.1202400

Ren Z., He X., Zheng H., Zhang D., Yu X., Shen G., Guo R. 2013: Estimation of the Relationship between Urban Park Characteristics and Park Cool Island Intensity by Remote Sensing Data and Field Measurement. Forests 4: 868–886. https://doi.org/10.3390/f4040868

Shashua-Bar L., Pearlmutter D., Erell E. 2011: The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. International Journal of Climatology 31: 1498–1506. https://doi.org/10.1002/joc.2177

Takács Á. 2013: Mikro-bioklimatológiai vizsgálatok egy szegedi sétálóutca példáján. Diplomamunka, Szegedi Tudományegyetem.

Takács Á., Kiss M., Hof A., Tanács E., Gulyás Á., Kántor N. 2016: Microclimate modification by urban shade trees – an integrated approach to aid ecosystem service based decision-making. Procedia Environmental Sciences 32: 97–109. https://doi.org/10.1016/j.proenv.2016.03.015

TeEB – The Economics of Ecosystems and Biodiversity 2011: TEEB Manual for Cities: Ecosystem Services in Urban Management. www.teebweb.org.

Tyrväinen L., Silvennoinen H., Kolehmainen O. 2003: Ecological and aesthetic values in urban forest management. Urban Forestry and Urban Greening 1: 135–149. https://doi.org/10.1078/1618-8667-00014

Unger J., Sümeghy Z. 2002: Környezeti klimatológia. JATEPress, Szeged.

Unger J., Savic S., Gál T. 2011: Modelling of the annual mean urban heat island pattern for planning of representative urban climate station network. Advances in Meteorology Paper 398613. https://doi.org/10.1155/2011/398613

Unger J., Lelovics E., Gál T., Mucsi L. 2014: A városi hősziget fogalom finomítása a lokális klímazónák koncepciójának felhasználásával – példák Szegedről. Földrajzi Közlemények 138: 50–63. https://doi.org/10.15201/hungeobull.63.1.3

Xiao Q., Mcpherson E.G., Simpson J.R., Ustin S.L. 1998: Rainfall interception by Sacramento’s urban forest. Journal of Agriculture 24: 235–244. https://doi.org/10.48044/jauf.1998.028

Published

2016-07-13

Issue

Section

Articles

How to Cite

Shaing efficiency of different urban tree species – ivestigation of popular urban shadetrees in Szeged, Hungary. (2016). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 14(1), 21-32. https://doi.org/10.56617/tl.3637

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.