The role of renewable energy sources in Hungarian electricity production
DOI:
https://doi.org/10.33032/acr.5921Keywords:
electricity, primary energy carrier, production concentrationAbstract
In the article, the sources of Hungarian electricity consumption was analyzed, as well as the composition and concentration of production. On the consumer side, the annual peak consumption trend of gross electricity was investigated, which also included a regression analysis of consumption. The data used for the analysis come from the databases of Eurostat, the Hungarian Central Statistical Office, the Hungarian Energy and Utilities Regulatory Office (MEKH) and the Hungarian Electricity Industry Transmission Controller (MAVIR). In Hungary, the sources of electricity consumption are domestic electricity generating plants, consumers producing from renewable sources and imported electricity. Hungary's electricity production based on nuclear and fossils, At the same time, electricity produced from renewable energies increased significantly, which can be attributed to the remarkable increase in solar energy production. In the last period, a significant proportion of the demand for electricity came from imports, while domestic production increased to a negligible extent. Hungary - with the exception of Slovenia - trades electricity with all neighboring countries.
References
Borsody Z. (2023): A magyar villamosenergia rendszer üzemirányítása, Miskolci Egyetem, www.uni-miskolc.hu/~elkborzo/Hálózatok-üzemirányítása-x.pdf (Letöltés: 2023.02.25.)
Cadoret, I. – Padovano, F. (2016): The political drivers of renewable energies policies, Energy Economics, 56, 261-269. https://doi.org/10.1016/j.eneco.2016.03.003.
Csiszárik-Kocsir Á. – Fodor M. – Medve A. (2015): Sponsors in the oil and gas industry in-vestments carried out with project financing in 2014. Macrotheme Review: A Multidisciplinary journal of Global Macro Trends. 4:5 pp. 42-58
Ellabban, O. Abu – Rub, H. – Blaabjerg, F. (2014): Renewable energy resources: Current status, future prospects and their enabling technology, Renewable and Sustainable Energy Reviews, 39: 2014. pp. 748-764. https://doi.org/10.1016/j.rser.2014.07.113
Demirbas, M. F. – Balat, M. – Balat, H. (2009): Potential contribution of biomass to the susta-inable energy development, Energy Conversion and Management, 50(7): 1746–1760. https://doi.org/10.1016/j.enconman.
Doner, J. (2007): Barriers to adoption of renewable energy technology, Illinois State University, Institute for Regulatory Policy Studies; 2007. p. 32
Eurostat (2012): Glossary: Gross electricity generation, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Gross_electricity_generation (Letöltés: 2023.02.25.)
Eurostat (2023a): Gross available energy, https://ec.europa.eu/eurostat/statistics-expla-ined/index.php?title=Calculation_methodologies_for_the_share_of_renewables_in_energy_consumption&oldid=555286#Gross_available_energy (Letöltés: 2024.01.01.)
Eurostat (2023b): EU-27 Complete energy balances, Gross available energy, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_3072384/default/table?lang=en (Letöltés: 2024.01.01.)
Eurostat (2023c): EU-27 Complete energy balances, Gross electricity production, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_3072385/default/table?lang=en (Letöltés: 2024.01.01.)
Eurostat (2023d): EU-27 Complete energy balances, Renewable Gross electricity production, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_3068753/default/table?lang=en (Letöltés: 2024.01.01.)
Eurostat (2023e): Production of electricity and derived heat by type of fuel, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_PEH__custom_4409470/default/table?lang=en (Letöltés: 2023.03.11.)
Eurostat (2023f): Európai Unió Statisztikai Hivatal, https://ec.europa.eu/eurostat
Eurostat (2023g): Imports of electricity and derived heat by partner country, https://ec.europa.eu/eurostat/databrowser/view/NRG_TI_EH__custom_9164231/default/table?lang=en (Letöltés: 2024.01.01.)
Eurostat (2023h): Exports of electricity and derived heat by partner country, https://ec.europa.eu/eurostat/databrowser/view/NRG_TE_EH__custom_9164370/default/table?lang=en (Letöltés: 2024.01.01.)
Eurostat (2023i): Simplified energy balances, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_S__custom_4345107/default/table (Letöltés: 2023.03.10.)
Gharavi, H. – Ghafurian, R. (2011): "Smart Grid The Electric Energy System of the Future [Scanning the Issue]," in Proceedings of the IEEE, vol. 99, no. 6, pp. 917-921, June 2011, https://doi.org/10.1109/JPROC.2011.2124210 .
Gostkowski, M. – Rokicki, T. – Ochnio, L. – Koszela, G. – Wojtczuk, K. – Ratajczak, M. – Szczepaniuk, H. – Bórawski, P. – Bełdycka-Bórawska, A. (2021): Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group, Energies 2021, 14, 5612. https://doi.org/10.3390/en14185612
Győrfi L. K. – Hugyecz A. (2020): Kiserőművi helyzetkép Magyarországon, Paks II. Zrt., Elemző percek, 24. rész, 2020. 04. 30., https://paks2.hu/web/guest/elemzo-percek (Letöltés: 2023.03.04.)
Holechek, J. L. – Geli, H. M. E. – Sawalhah, M. N. – Valdez, R. (2022): A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, 4792. https://doi.org/10.3390/su14084792
Huzsvai L. (2012): Statisztika, Seneca Books, 2012, ISBN 978-963-08-5016-2, http://seneca-books.hu/doc/978_963_08_5016_2.pdf
IEA (2022a): World Energy Outlook 2022, 2022, Paris, https://www.iea.org/reports/world-energy-outlook-2022 (Letöltés: 2023.03.08.)
IEA (2022b): Renewable Electricity, IEA, Paris. https://www.iea.org/reports/renewable-electricity (Letöltés: 2023.03.05.)
IEA (2022c): Electricity Market Report - January 2022, https://www.iea.org/reports/electricity-market-report-january-2022/executive-summary (Letöltés: 2023.02.11.)
IRENA (2018): Renewable Energy Prospects for the European Union, European Union and IRE-NA, 2018, ISBN 978-92-9260-007-5, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Feb/IRENA_REmap_EU_2018.pdf
Irinyi D. (2016): Az egységes európai villamosenergia-rendszerről rendszerirányítói szemmel, Energetikai szakkollégium, 2016.05.05., https://www.eszk.org/attachments/l293/besz/ver_beszamolo.pdf (Letöltés: 2023.03.13.)
KSH (2022): Bruttó villamosenergia-termelés, https://www.ksh.hu/stadat_files/ene/hu/ene0009.html (Letöltés: 2024.01.01.)
KSH (2023): Központi Statisztikai Hivatal, www.ksh.hu
Kulcsár B. (2018): A nem engedélyköteles, megújuló energiát hasznosító kiserőművek területi elhelyezkedése Magyarországon. Műszaki Tudomány az Észak – Kelet Magyarországi Régióban 2018 1-8. ISBN 978-963-7064-37-1
Liang, X. (2016): Emerging power quality challenges due to integration of renewable energy so-urces. IEEE Trans. Ind. Appl. 2016, 53, 855–866. https://doi.org/10.1109/TIA.2016.2626253.
Marques, A. D. – Fuinhas, J. A. (2011): Drivers promoting renewable energy: A dynamic panel approach, Renewable and Sustainable Energy Reviews, 2011, 15, 1601-1608. https://doi.org/10.1016/j.rser.2010.11.048
MAVIR (2023a): Magyar Villamosirányító Rendszer, www.mavir.hu
MAVIR (2023b): Havi és a téli-nyári bruttó csúcsidei rendszerterhelések, https://www.mavir.hu/web/mavir/havi-es-a-teli-nyari-brutto-csucsidei-rendszerterhelesek (Letöltés: 2024.01.01.)
Mehedintu, A. – Soava, G. – Sterpu, M. – Grecu, E. (2021): Evolution and Forecasting of the Renewable Energy Consumption in the Frame of Sustainable Development: EU vs. Romania, Sustainability 2021, 13, 10327. https://doi.org/10.3390/su131810327
MEKH (2023): Magyar Energetikai- és Közmű-szabályozási Hivatal, www.mekh.hu
Ministry of National Development (2012): National Energy Strategy 2030., https://2010-2014.kormany.hu/download/7/d7/70000/Hungarian%20Energy%20Strategy%202030.pdf (Le-töltés: 2023.03.15.)
MVM (2022): Fogalomtár, https://mvmenergiakereskedo.hu/oldalak/699
Our World in Data (2023a): Electricity consumption from fossil fuels, nuclear and renewables, World, 2022, https://ourworldindata.org/grapher/elec-mix-bar?country=~OWID_WRL (Letöltés: 2024.01.02.)
Our World in Data (2023b): Primary energy consumption from fossil fuels, nuclear and renewables, World, 2022, https://ourworldindata.org/grapher/sub-energy-fossil-renewables-nuclear?country=~OWID_WRL (Letöltés: 2024.01.02.)
Our World in Data (2023c): Electricity production by source, World, https://ourworldindata.org/grapher/electricity-production-by-source?time=2011..latest&facet=none (Letöltés: 2024.01.02.)
Øvergaard, S. (2023): Issue Paper: Definition of Primary and Secondary Energy, https://unstats.un.org/unsd/envaccounting/londongroup/meeting13/LG13_12a.pdf (Letöltés: 2023.02.21.)
Owusu, P. A. – Asumadu-Sarkodie, S. (2016): A review of renewable energy sources, sustainabi-lity issues and climate change mitigation, Cogent Eng. 2016, 3, 1167990. https://doi.org/10.1080/23311916.2016.1167990
Papież, M. – Śmiech, S. – Frodyma, K. (2018): Determinants of renewable energy development in the EU countries. A 20-year perspective. Renewable and Sustainable Energy Reviews, 2018, 91, 918–934. https://doi.org/10.1016/j.rser.2018.04.075
Pinto, R. – Henriques, S. T. – Brockway, P. E. – Heun, M. K. – Sousa, T. (2023): The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition, Energy, 2023, 269, 1-14, https://doi.org/10.1016/j.energy.2023.126775.
Popp J. (2013): The role of bioenergy in the global energy supply, Gazdálkodás, Budapest. 57 (5): 419 – 435.
Popp J. – Kot S. – Lakner Z. – Oláh J. (2018a): Biofuel use: peculiarities and implications, Journal of Security and Sustainability Issues, 7(3), 2018 p. 77-493. https://doi.org/10.9770/jssi.2018.7.3(9)
Popp J. – Oláh J. – Farkas Fekete M. – Lakner Z. – Máté D. (2018b): The Relationship Between Prices of Various Metals, Oil and Scarcity, Energies, p. 1-19. 2018 https://doi.org/10.3390/en11092392,
Puertas, R. – Marti, L. (2022): Renewable energy production capacity and consumption in Euro-pe, Science of The Total Environment, 853, 158592, https://doi.org/10.1016/j.scitotenv.2022.158592.
Rabe, M. – Bilan, Y. – Widera, K. – Vasa, L. (2022): Application of the Linear Programming Method in the Construction of a Mathematical Model of Optimization Distributed Energy. Ener-gies 2022, 15, 1872. https://doi.org/10.3390/en15051872
Reiche, D. – Bechberger, (2004): M. Policy differences in the promotion of renewable energies in the EU member states. Energy Policy, 2004. 32(7): 843 – 849. https://doi.org/10.1016/S0301-4215(02)00343-9
REN21 (2018): Renewables 2018, Global Status Report (2018), http://www.ren21.net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_-1.pdf (Letöltés: 2023.02.11.).
Renewable Energy Sources (2022): Definition, Types and Stocks., https://climate.selectra.com/en/environment/renewable-energy (Letöltés: 2023.02.10.)
Ritchie, H. – Roser, M. – Rosado, P. (2020): "Energy". Published online at OurWorldInDa-ta.org., https://ourworldindata.org/energy (Letöltés: 2023.02.20.)
Rokicki, T. – Bórawski, P. – Gradziuk, B. – Gradziuk, P. – Mrówczyńska-Kamińska, A. – Kozak, J. – Guzal-Dec, D.J. – Wojtczuk, K. (2021): Differentiation and Changes of Household Electri-city Prices in EU Countries, Energies 2021, 14, 6894. https://doi.org/10.3390/en14216894
Solaun, K. – Cerdá, E. (2019): Climate change impacts on renewable energy generation. A review of quantitative projections. Renew. Sustain. Energy Rev. 116, 109415. https://doi.org/10.1016/j.rser.2019.109415
Stec, M. – Grzebyk, M. (2022): Statistical Analysis of the Level of Development of Renewable Energy Sources in the Countries of the European Union. Energies 2022, 15, 8278. https://doi.org/10.3390/en15218278
Svazas, M. – Navickas, V. – Bilan, Y. – Vasa, L. (2022): The Features of the Shadow Economy Impact’ on Biomass Energy Sector, Energies, 2022; 15(8):2932. https://doi.org/10.3390/en15082932
Takács-György, K. – Domán, S. – Tamus A. – Horská, E. – Palková, Z. (2015): "What Do The Youth Know About Alternative Energy Sources – Case Study From Hungary And Slovakia1" Visegrad Journal on Bioeconomy and Sustainable Development, vol.4, no.2, 2015, pp.36 41. https://doi.org/10.1515/vjbsd-2015-0009
Tolmac, D. – Prulovic, S. – Lambic, M. – Radovanovic, L. – Tolmac, J. (2013): Global Trends on Production and Utilization of Biodiesel, Energy Sources Part B Econ. Plan. Policy 2013, 9, 130–139. https://doi.org/10.1080/15567241003773226
Viktor P. – Kenderesi Á. – Garai-Fodor M. (2020): Research of the Hungarian Road Transporta-tion Companies’ Alternative Fuel Usage, Macrotheme Review: A Multidisciplinary journal of Global Macro Trends, 2020, 9: 1 pp. 109-116.
Waheed, R. – Sarwar, S. – Wei, C. (2019): The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. https://doi.org/10.1016/j.egyr.2019.07.006
Wiuff, A. – Sandholt, K. – Marcus-Møller, C. (2006): Renewable energy technology deployment: barriers, challenges and opportunities, EA energy analyses for the IEA RETD implementing agreement. 2006.
Zaharia, A – Diaconeasa, M. C. – Brad, L. – Lădaru, G. R. – Ioanăș, C. (2019): Factors Influenc-ing Energy Consumption in the Context of Sustainable Development, Sustainability, 2019; 11(15):4147. https://doi.org/10.3390/su11154147
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Bozsik Nándor, Bozsik Norbert
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.