New results on the polarotactic behaviour of tabanids (tabanidae) (review)

Authors

  • Dénes Száz Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University 1117 Budapest, Pázmány sétány, 1., Hungary https://orcid.org/0000-0002-9087-0928
  • Tamás Herczeg Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University 1117 Budapest, Pázmány sétány, 1., Hungary https://orcid.org/0000-0003-3314-7183

DOI:

https://doi.org/10.56617/tl.3743

Keywords:

tabanid traps, polarization vision, imaging polarimetry, ecological trap

Abstract

The flying individuals of tabanids, similarly to other water-related and aquatic insects, detect water by the horizontally polarized light reflected from the water surface. The positive polarotaxis (i.e. the attraction to horizontally polarized light) of tabanids, discovered in 2008, made it possible to develop new tabanid traps based on reflected light polarization. The recent results on the polarotactic behaviour of tabanids, such as evidences for polarotactic host detection, contributed to the design of polarization tabanid traps. Furthermore, they made it possible to answer the old questions: What benefits the striped or spotted patterns of mammal coats do have? In this work we give a short summary about the most recent results in this topic.

Author Biographies

  • Dénes Száz, Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University 1117 Budapest, Pázmány sétány, 1., Hungary

    szaz.denes@gmail.com

  • Tamás Herczeg, Environmental Optics Laboratory, Department of Biological Physics, Physical Institute, Eötvös University 1117 Budapest, Pázmány sétány, 1., Hungary

    tamasherczeg29@gmail.com

References

Bernáth, B., Szedenics, G., Molnár, G., Kriska, Gy., Horváth, G. 2001a: Visual ecological impact of „shiny black anthropogenic products” on aquatic insects: oil reservoirs and plastic sheets as polarized traps for insects associated with water. Archives of Nature Conservation and Landscape Research 40(2): 87–107.

Bernáth, B., Szedenics, G., Molnár, G., Kriska, Gy., Horváth, G. 2001b: Visual ecological impact of a peculiar waste oil lake on the avifauna: dual–choice field experiments with water–seeking birds using huge shiny black and white plastic sheet. Archives of Nature Conservation and Landscape Research 40(1): 1–28.

BERNÁTH, B., KRISKA, GY., SUHAI, B., HORVÁTH, G. 2008: Wagtails (Aves: Motacillidae) as insect indicators on plastic sheets attracting polarotactic aquatic insects. Acta Zoologica Academiae Scientiarum Hungaricae 54(Suppl. 1), 145–155.

Blahó M. 2009: Egy új, polarizációs bögölycsapda. Tájökológiai Lapok 7(2): 10–39. (in Hungarian with English abstract)

Blahó, M., Egri, Á., Barta, A., Kriska, Gy., Antoni, G., Horváth, G. 2012a: How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics. Veterinary Parasitology 189: 353–365. https://doi.org/10.1016/j.vetpar.2012.04.016

Blahó, M., Egri, Á., Báhidszki, L., Kriska, Gy., Hegedüs, R., Akesson, S., Horváth, G. 2012b: Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns. Public Library of Science ONE (PLoS ONE) 7(8): e41138. https://doi.org/10.1371/journal.pone.0041138

Catts, E. P. 1970: A canopy trap for collecting Tabanidae. Mosquito News 30: 472–474.

Csabai, Z., Boda, P., Bernáth, B., Kriska, G., Horváth, G. 2006: A ‘polarisation sun–dial’ dictates the optimal time of day for dispersal by flying aquatic insects. Freshwater Biology 51: 1341–1350. https://doi.org/10.1111/j.1365-2427.2006.01576.x

Egri, Á., Blahó, M., Sándor, A., Kriska, Gy., Gyurkovszky, M., Farkas, R., Horváth, G. 2012a: New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces. Naturwissenschaften 99: 407–416. https://doi.org/10.1007/s00114-012-0916-2

Egri, Á., Blahó, M., Kriska, Gy., Farkas, R., Gyurkovszky, M., Åkesson, S., Horváth, G. 2012b: Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: An advantage of zebra stripes. Journal of Experimental Biology 215: 736–745. https://doi.org/10.1242/jeb.065540

Egri, Á., Blahó, M., Száz, D., Barta, A., Kriska, G., Antoni, G., Horváth, G. 2013: A new tabanid trap applying the modified concept of the old flypaper: linearly polarizing sticky black surfaces as an effective tool to catch polarotactic horseflies. International Journal for Parasitology 43: 555-563. https://doi.org/10.1016/j.ijpara.2013.02.002

Foil, L. D. 1989: Tabanids as vectors of disease agents. Parasitology Today 5: 88-96. https://doi.org/10.1016/0169-4758(89)90009-4

Günther, A.. 2003: Eiablage von Sympetrum vulgatum auf ein parkendes Auto (Odonata: Libellulidae). Libellula 22:19-23.

Horváth, G., Varjú, D. 2004: Polarized Light in Animal Vision Polarization Patterns in Nature. Springer-Verlag, Heidelberg - Berlin - New York, p. 447 https://doi.org/10.1007/978-3-662-09387-0

Horváth, G., Malik, P., Kriska, G., Wildermuth, H. 2007: Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshwater Biology 52: 1700-1709. https://doi.org/10.1111/j.1365-2427.2007.01798.x

Horváth, G., Kriska, G., 2008: Polarization vision in aquatic insects and ecological traps for polarotactic insects. In: Aquatic Insects: Challenges to Populations. (Lancaster, J. and Briers, R. A., eds.) CAB International Publishing, Wallingford, Oxon, UK, Chapter 11, pp. 204-229. https://doi.org/10.1079/9781845933968.0204

Horváth, G., Majer, J., Horváth, L., Szivák, I., Kriska, Gy. 2008: Ventral polarization vision in tabanids: horse- flies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95: 1093-1100. https://doi.org/10.1007/s00114-008-0425-5

Horváth, G., Kriska, Gy., Malik, P., Robertson, B. 2009: Polarized light pollution: a new kind of ecological photopollution. Frontiers in Ecology and the Environment 7(6): 315-327. https://doi.org/10.1890/080129

Horváth, G., Blahó, M., Kriska, Gy., Hegedüs, R., Gerics, B., Farkas, R., Susanne, A. 2010a: An unexpected advantage of whiteness in horses: The most horsefly-proof horse has a depolarizing white coat. Proceedings B of the Royal Society 277: 1643-1650. https://doi.org/10.1098/rspb.2009.2202

Horváth, G., Blahó, M., Egri, Á., Kriska, Gy., Seres, I., Robertson, B. 2010b: Reducing the maladaptive attractiveness of solar panels to polarotactic insects. Conservation Biology 24: 1644-1653. https://doi.org/10.1111/j.1523-1739.2010.01518.x

Horváth, G., Móra, A., Bernáth, B., Kriska, Gy. 2011: Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiology and Behavior 104: 1010-1015. https://doi.org/10.1016/j.physbeh.2011.06.022

KRINSKY, W. L. 1976: Animal disease agents transmitted by horse flies and deer flies (Diptera: Tabanidae). Journal of Medical Entomology 13: 225-275. https://doi.org/10.1093/jmedent/13.3.225

Kriska, Gy., Horváth, G., Andrikovics, S. 1998: Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera. Journal of Experimental Biology 200: 2273-2286. https://doi.org/10.1242/jeb.201.15.2273

Kriska, G., Csabai, Z., Boda, P., Malik, P., Horváth, G. 2006a: Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proceedings of the Royal Society B 273: 1667-1671. https://doi.org/10.1098/rspb.2006.3500

Kriska, Gy., Malik, P., Csabai, Z., Horváth, G. 2006b: Why do highly polarizing black burnt-up stubble-fields not attract aquatic insects? An exception proving the rule. Vision Research 46: 4382-4386. https://doi.org/10.1016/j.visres.2006.08.020

Kriska, G., Bernáth, B., Horváth, G. 2007: Positive polarotaxis in a mayfly that never leaves the water surface: polarotactic water detection in Palingenia longicauda (Ephemeroptera). Naturwissenschaften 94: 148-154. https://doi.org/10.1007/s00114-006-0180-4

Kriska, G., Malik, P., Szivák, I., Horváth, G. 2008a: Glass buildings on river banks as "polarized light traps" for mass-swarming polarotactic caddis flies. Naturwissenschaften 95: 461-467. https://doi.org/10.1007/s00114-008-0345-4

Kriska, Gy., Majer, J., Horváth, L., Szivák, I., Horváth, G. 2008b: Polarotaxis in tabanid flies and its practical significance. Acta Biologica Debrecina Supplementum Oecologica Hungarica 18: 101-108.

Kriska, Gy., Barta, A., Suhai, B., Bernáth, B., Horváth, G. 2008c: Do brown pelicans mistake asphalt roads for water in deserts? Acta Zoologica Academiae Scientiarum Hungaricae 54(1, Suppl. 1), 157-165.

Kriska, G., Bernáth, B., Farkas, R., Horváth, G. 2009: Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae). Journal of Insect Physiology 55: 1167-1173. https://doi.org/10.1016/j.jinsphys.2009.08.013

Lehane, M. J. 2005: The Biology of Blood-Sucking in Insects. 2nd edition, Cambridge University Press, Cambridge, UK

Lerner, A., Meltser, N., Sapir, N., Erlick, C., Shashar, N., Broza, M. 2008: Reflected polarization guides chironomid females to oviposition sites. J, Exp, Biol, 211: 36-43. https://doi.org/10.1242/jeb.022277

Lerner, A, Sapir, N, Erlick, C, Meltser, N, Broza, M, Shashar, N. 2011: Habitat availability mediates chironomid density-dependent oviposition. Oecologia 165: 905-914. https://doi.org/10.1007/s00442-010-1893-9

Longcore, T., Rich, C. 2004: Ecological light pollution. Frontiers in Ecology and the Environment 2: 191-198

Luger, S. W. 1990: Lyme disease transmitted by a biting fly. New England Journal of Medicine 322: 1752-1759. https://doi.org/10.1056/NEJM199006143222415

Majer J. 1987: Tabanids - Tabanidae. In: Fauna Hungariae. Akadémiai Kiadó, Budapest, 14(9): 1-57 (in Hungarian)

Malaise, R. 1937: A new insect-trap. Entomologisk Tidskrift Stockholm 58: 148-160.

Malik, P., Hegedüs, R., Kriska, G., Horváth, G. 2008: Imaging polarimetry of glass buildings: Why do vertical glass surfaces attract polarotactic insects? Applied Optics 47: 4361-4374. https://doi.org/10.1364/AO.47.004361

Málnás, K., Polyák, L., Prill, É., Hegedüs, R., Kriska, Gy., Dévai, Gy., Horváth, G., Lengyel, Sz. 2011: Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: an overlooked threat to freshwater biodiversity? Journal of Insect Conservation 15: 823-832. https://doi.org/10.1007/s10841-011-9380-0

Marshall, N. J. 1988: A unique colour and polarization vision system in mantis shrimps. Nature 262: 709-711.

Marshall, N. J., Land, M. F., King, C. A., Cronin, T. W. 1991: The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarised light. Philos Trans. R. Soc. Lond B Biol. Sci. 334: 33-56. https://doi.org/10.1098/rstb.1991.0096

Meltser, N, Kashi, Y, Broza, M. (2008) Does polarized light guide chironomids to navigate toward water surfaces? Bol Mus Munic Funchal (História Natural)13(Suppl): 141-149.

MEYER-Rochow, V. B., REID, W. A. 1994: Male and female eyes of the Antarctic midge Belgica antarctica (Diptera: Chironomidae) - a scanning electron microscopic study. Appl. Entomol. Zool. 29: 439-442. https://doi.org/10.1303/aez.29.439

Mizera, F., Bernáth, B., Kriska, Gy., Horváth, G. 2001: Stereo Videopolarimetry: Measuring and Visualizing Polarization Patterns in Three Dimensions. Journal of Imaging Science and Technology 45(4): 393-399.

Molnár, Á., Hegedüs, R., Kriska, Gy., Horváth, G. 2010: Effect of cattail (Typha spp.) mowing on water beetle assemblages: changes of environmental factors and the aerial colonization of aquatic habitats. Journal of Insect Conservation 15: 389-399. https://doi.org/10.1007/s10841-010-9347-6

Moore, T. R., Slosser, J. E., Cocke, J., Newton, W. H. 1996: Effect of trap design and color in evaluating activity of Tabanus abactor Philip in Texas rolling plains habitat. Southwestern Entomologist 21: 1-11.

Muirhead-Thomson, R. C. 1991: Trap Responses of Flying Insects: The Influence of Trap Design on Capture Efficiency. Academic Press, Harcourt Brace Jovanovich Publishers, London - New York

Nilsson, A. N. 1997: On flying Hydroporus and the attraction of H. incognitus to red car roofs. Latissimus 9: 12-16.

Rich, C., Longcore, T. (EDS.) 2006: Ecological Consequences of Artificial Night Lighting. Island Press, Washington, Covelo, London

Robertson, B., Kriska, Gy., Horváth, V., Horváth, G. 2010: Glass building as bird feeders: urban birds exploit insects trapped by polarized light pollution. Acta Zoologica Academiae Scientiarum Hungaricae 56(3): 283-293.

Schwind, R. 1985: Sehen unter und über Wasser, Sehen von Wasser. Naturwissenschaften 72: 343-352. https://doi.org/10.1007/BF00410595

Schwind, R. 1991: Polarization vision in water insects and insects living on a moist substrate. Journal of Comparative Physiology A 169: 531-540. https://doi.org/10.1007/BF00193544

Schwind, R. 1995: Spectral regions in which aquatic insects see reflected polarized light. Journal of Comparative Physiology A. 177: 439-448. https://doi.org/10.1007/BF00187480

Stevani, C. V,, Porto, J. S,, Trindade, D. J., Bechara, E. J. H. 2000a: Automotive clearcoat damage due to oviposition of dragonflies. J. Appl. Polym. Sci. 75: 1632-1639. https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1632::AID-APP9>3.0.CO;2-M

Stevani, C. V., Faria, D. L. A., Porto, J. S., Trindade, D. J., Bechara, E. J. H. 2000b: Mechanism of automotive clearcoat damage by dragonfly eggs investigated by surface enhanced Raman scattering. Polym. Degrad. Stab. 68: 61-66. https://doi.org/10.1016/S0141-3910(99)00165-2

Trujillo-Cenoz, O., Bernard, G. D. 1972: Some aspect of the retinal organisation of Sympyncus lineatus Loew (Diptera, Dolichopodidae). J. Ult. Res. 38: 149-160. https://doi.org/10.1016/S0022-5320(72)90089-5

van Vondel, B. J. 1998: Another case of water beetles landing on a red car roof. Latissimus;10: 29.

Watson, J. A. L. 1992: Oviposition by exophytic dragonflies on vehicles. Not. Odonatol. 3: 137.

Wildermuth, H., Horváth, G. 2005: Visual deception of a male Libellula depressa by the shiny surface of a parked car (Odonata: Libellulidae). International Journal of Odonatology 8: 97-105. https://doi.org/10.1080/13887890.2005.9748246

Published

2013-07-03

Issue

Section

Articles

How to Cite

New results on the polarotactic behaviour of tabanids (tabanidae) (review). (2013). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 11(1), 183-192. https://doi.org/10.56617/tl.3743

Similar Articles

21-30 of 130

You may also start an advanced similarity search for this article.