The impact of ungulate browsing on black locust competitive abilities in a temperate oak forest

Autor/innen

  • Ádám Fehér Department of Wildlife Biology and Management, Institute for Wildlife Manage-ment and Nature Conservation, Hungarian University of Agriculture and Life Sci-ences Páter Károly u. 1., 2100-Gödöllő, Hungary, e-mail: feher.adam.hun@gmail.com
  • Csaba Centeri Department of Nature Conservation and Landscape Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences ; National Laboratory for Health Security, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100-Gödöllő, Hungary, e-mail: centeri.csaba@uni-mate.hu
  • Boglárka Keller Department of Nature Conservation and Landscape Management, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences Páter Károly u. 1., 2100-Gödöllő, Hungary, e-mail: bogi87@gmail.com
  • Krisztián Katona Department of Wildlife Biology and Management, Institute for Wildlife Management and Nature Con-servation, Hungarian University of Agriculture and Life Sciences ; National Laboratory for Health Security, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100-Gödöllő, Hungary, e-mail: katona.krisztian@uni-mate.hu

DOI:

https://doi.org/10.56617/tl.6535

Schlagwörter:

fence, plant competition, Robinia pseudoacacia, sessile oak, simulated browsing, soil nitrogen

Abstract

Invasive species such as black locust (Robinia pseudoacacia) cause several problems in conserving semi-natural forests in Europe. The selective browsing of ungulates can be a prominent regulating factor in the spread of black locusts. We set out a 4 year-long experiment in a fenced area of a Turkey oak (Quercus cerris) – sessile oak (Quercus petraea) forest in Hungary to 1) evaluate short-term responses of black locust saplings to simulated browsing; 2) identify the effects of browsing and soil conditions on the competition between black locust and oak saplings. We hypothesized that clipping treatments would reduce the growth and vitality of black locusts and indirectly enhance oak sapling development. Vegetation patches were designated to separate oak saplings with treated and intact black locust saplings, and without black locust. After the first round of treatments in September 2014, clipped black locusts compensated for height and shoot loss. The summer drought in 2015 reduced the survival of black locusts independently of the clipping and many saplings disappeared from previously occupied plots. In addition, the effects of the second clipping treatment in September 2015 have significantly slowed down, even hindering further growth of the clipped saplings. Soil nitrogen level was not higher in black locust plots, but low pH and significant soil compaction could be limiting factors for all saplings. Our results did not confirm any significant inhibitory effect of black locust on oak sapling development, but sessile oak had increased height growth compared to Turkey oak in black locust plots. It seems that browsing is only a secondary factor that influences the growth and competitiveness of black locusts since only repeated browsing after a heavy drought period could prevent black locust saplings from compensating for their losses.

Literaturhinweise

Åberg, J., Swenson, J.E., Angelstam, P. 2003: The habitat requirements of hazel grouse (Bonasa bonasia) in managed boreal forest and applicability of forest stand descriptions as a tool to identify suitable patches. Forest Ecol. Manag. 175(1–3): 437–444. DOI: https://doi.org/10.1016/S0378-1127(02)00144-5

Baraza, E., Zamora, R., Hódar, J.A., Gomez J.M. 2007: Plant-herbivore interaction: Beyond a binary vi-sion. In: Pugnaire, F.I., Vallandares, F. (Eds.): Functional Plant Ecology. 2nd ed., Publisher: CRC Press, USA, pp. 481–514. ISBN 9780849374883,

Belsky, A.J., Walter, P.C., Cynthia, L.J., Gordon, A.F. 1993: Overcompensation by plants: herbivore opti-mization or red herring? Evol. Ecol. 7(1): 109–121. DOI: https://doi.org/10.1007/BF01237737

Benesperi, R., Giuliani, C., Zanetti, S., Gennai, M., Lippi M. M., Guidi, T., Nascimbene, J., Foggi, B. 2012: Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers. Con-serv. 21: 3555–3568. DOI: https://doi.org/10.1007/s10531-012-0380-5

Brooks, M.E., Kristensen, K., Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M. 2017: GLMM tmb Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9(2): 378–400. DOI: https://doi.org/10.3929/ethz-b-000240890

Burgiel, S.W., Muir, A.A. 2010: Invasive Species, Climate Change and Ecosystem-Based Adaptation: Addressing Multiple Drivers of Global Change. Global Invasive Species Programme (GISP), Wash-ington DC, USA, and Nairobi, Kenya, 56 p.

Canham, C.D., McAninch, J.B., Wood, D.M. 1994: Effects of the frequency, timing, and intensity of simu-lated browsing on growth and mortality of tree seedlings. Can. J. Forest Res. 24(4): 817–825. DOI: https://doi.org/10.1139/x94-107

Chiarucci, A., Araújo, M.B., Decocq, G., Beierkuhlein, C., Fernandez-Palacios, J.M. 2010: The concept of potential natural vegetation: an epitaph? J. Veg. Sci. 21(6): 1172–1178. DOI: https://doi.org/10.1111/j.1654-1103.2010.01218.x

Csorba, P., Ádám, Sz., Bartos-Elekes, Zs., Bata, T., Bede-Fazekas, Á., Czúcz, B., Csima, P., Csüllög, G., Fodor, N., Frisnyák, S. et al. 2018: Landscapes. In: Kocsis, K., Gercsák, G., Horváth, G., Keresztesi, Z., Nemerkényi, Zs. (eds.): National atlas of Hungary: volume 2. Natural environment. Budapest, Hun-gary: Geographical Institute, Research Centre for Astronomy and Earth Sciences, pp. 112–129.

Cutini, A., Mercurio, R. 1997: Growth and development of sessile oak (Quecus petraea) and Turkey oak (Quercus cerris) seedlings in response to varying light and soil moisture conditions. Coenoses 12(1): 27–32.

Drexhage, M., Chauviére, M., Colin, F., Nielsen, N.N.C. 1999: Development of structural root architecture and allometry of Quercus petraea. Can. J. Forest Res. 29(5): 600–608. DOI: https://doi.org/10.1139/x99-027

Erdős L. 1999: Ültetvényszerű fatermesztés. In: Pápai, G. (Ed.): Erdőgazdák új könyve. Mezőgazda Pub-lishing Inc: Budapest, Hungary, pp. 266–283.

Fehér Á., Katona K. 2013: Akácrágás: vadkár vagy vadhatás? Erdészeti Lapok 148 (9): 278–281.

Fehér, Á., Szabó, B., Centeri, Cs. 2014: Effects of soil properties and simulated browsing on oak-black locust competition in an oak-dominated forest. In: Čelkova, A. (ed): Proceedings of the 21st Interna-tional Poster Day Transport of Water, Chemicals and Energy in the Soil-Plant-Atmosphere System, 2014, Bratislava, Slovakia, 13.11.2014, p. 62–67. ISBN 978-80-89139-33-0

Fehér, Á., Szabó, B., Katona, K., Pósa, P., Centeri, Cs. 2016: Effects of soil structure, nutrient availability and humus content on vegetation dynamics in a Turkey oak-sessile oak forest, Hungary. In: Proceed-ings of the 15th Alps-Adria Scientific Workshop, 2016, Mali Lošinj, Croatia, 231–234. p. DOI: https://doi.org/10.12666/Novenyterm.65.2016.Supp

Graham, R.T., Jain, T.B., Kingery, J.L. 2010: Ameliorating conflicts among deer, elk, cattle and/or other ungulates and other forest uses: a synthesis. Forestry 83(3): 245–255. DOI: https://doi.org/10.1093/forestry/cpq003

GraphPad Software. GraphPad Prism version 6.01 for Windows. GraphPad Software Inc., La Jolla Cali-fornia USA, 2012, https://www.graphpad.com (accessed on 13/03/2016)

Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.5., 2022, https://CRAN.R-project.org/package=DHARMa (accessed on 13/03/2018)

Hester, A.J., Millard, P., Gordon. J.B., Wendler R. 2004: How does timing of browsing affect above- and below-ground growth of Betula pendula, Pinus sylvestris, Sorbus acuparia? Oikos 105 (3): 536–550. DOI: https://doi.org/10.1111/j.0030-1299.2004.12605.x

Hilton, G.M, Packham, J.R., Willis, A.J. 1987: Effects of experimental defoliation on a population of pe-dunculate oak (Quercus robur L.). New Phytol. 107(3): 603–612. DOI: https://doi.org/10.1111/j.1469-8137.1987.tb02930.x

Hjältén, J., Danell, K., Ericson, L. 1993: Effects of simulated herbivory and intraspecific competition on the compensatory ability of birches. Ecology 74(4): 1136–1142. DOI: https://doi.org/10.2307/1940483

Huntley, J.C. 1990: Robinia pseudoacacia L. Black locust. In: Burns, R.M., Honkala, B.H., (Eds.): Silvics of North America, volume 2, hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Ag-riculture, Forest Service, 755–761.

International Commission for the Protection of the Danube River. The 2015 droughts in the Danube Riv-er basin. ICPDR, Austria, 2017.

Kassambara, A. Cox Proportional Hazards Model. STHDA - Statistical tools for high-throughput data analysis, 2016. http://www.sthda.com (accessed on 1 January 2020)

Katona, K., Kiss, M., Bleier, N., Székely, J., Nyeste, M., Kovács, V., Terhes, A., Fodor, Á., Olajos, T., Raszt-ovits, E., Szemethy, L. 2013: Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary. Biodiv. Conserv. 22 (5): 1167–1180. DOI: https://doi.org/10.1007/s10531-013-0490-8

Kátai, J. 2013: Applied Soil Science. University of Debrecen, Service Sciences Methodology Centre, Debre-cen, Hungary

Köstler, J.N., Brückner, E., Bibelriether, E. 1968: Die Wurzeln der Waldbäume. Verlag Paul Parey, Ham-burg, Germany.

Kullberg, Y., Welander, N.T. 2003: Effects of simulated winter browsing and drought on growth of Quer-cus robur L. seedlings during establishment. Forest Ecol. Manag. 173(1–3): 125–133. DOI: https://doi.org/10.1016/S0378-1127(02)00017-8

Lüdecke, D., Ben-Sachar, M.S., Patil, I., Waggoner, P., Makowski, D. 2021: Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software 6(60): 3139. DOI: https://doi.org/10.21105/joss.03139

Mantovani, D., Veste, M., Freese, D. 2014: Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water-use efficiency. New Zeal. J. For. Sci. 44: 29. DOI: https://doi.org/10.1186/s40490-014-0029-0

Mátrai, K., Szemethy, L., Tóth, P., Katona, K., Székely, J. 2004: Resource use by red deer in lowland nonnative forests, Hungary. J. Wildlife Manage. 68(4): 879–888. DOI: https://doi.org/10.2193/0022-541X(2004)068[0879:RUBRDI]2.0.CO,2

Moshki, A., Lamersdorf, N.P. 2011: Symbiotic nitrogen fixation in black locust (Robinia pseudoacacia L.) seedlings from four seed sources. J. Forestry Res. 22(4): 689. DOI: https://doi.org/10.1007/s11676-011-0212-6

Nasir, H., Iqbal, Z., Hiradate, S., Fujii, Y. 2005: Allelopathic potential of Robinia pseudo-acacia L. J. Chem. Ecol. 31(9): 2179–2192. DOI: https://doi.org/10.1007/s10886-005-6084-5

Nicolescu, V.N., Rédei, K., Mason, W.L, et al. 2020: Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non‑native species integrated into European forests. J. Forestry Res. 31(4): 1081–1101. DOI: https://doi.org/10.1007/s11676-020-01116-8

Oliver, C.D., Osawa, A., Camp, A. 1998: Forest dynamics and resulting animal and plant population changes at the stand and landscape levels. J. Sustain. Forest., 6(3-4): 281–312. https://doi.org/10.1300/J091v06n03_05

R Development Core Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2019, Vienna, Austria.

Reynolds, L.H., Rajaniemi, K.T. 2007: Plant interactions: Competition. In: Pugnaire, F.I., Vallandares, F. (Eds.): Functional Plant Ecology. 2nd ed., Publisher: CRC Press, USA, 2007, pp. 457–480.

Richardson, D.M., Rejmánek, M. 2011: Trees and shrubs as invasive alien species - a global review. Di-vers. Distrib. 17(5): 788–809. DOI: https://doi.org/10.1111/j.1472-4642.2011.00782.x

Shen, X., Bourg, N.A., McShea, W.J., Turner B.L. 2016: Long-term effects of white-tailed deer exclusion on the invasion of exotic plants: A case study in a Mid-Atlantic temperate forest. PLoS ONE 11(3): e0151825. DOI: https://doi.org/10.1371/journal.pone.0151825

Silaeva, T., Andreychev, A., Kiyaykina, O., Balčiauskas, L. 2021: Taxonomic and ecological composition of forest stands inhabited by forest dormouse Dryomys nitedula (Rodentia: Gliridae) in the Middle Vol-ga. Biologia 76(5): 1475–1482. DOI: https://doi.org/10.2478/s11756-020-00651-3

Therneau, T. coxme: mixed effects Cox models. R package version 2.2-3. 2022, Vienna, Austria: R Foun-dation for Statistical Computing.

Vandenberghe, C., Freléchoux, F., Buttler, A. 2008: The influence of competition from herbaceous vegeta-tion and shade on simulated browsing tolerance of coniferous and deciduous saplings. Oikos 117(3): 415–423. DOI: https://doi.org/10.1111/j.2007.0030-1299.16264.x

Vítková, M., Sádlo, J., Rolecek, J., Petrík, P., Sitzia, T., Müllerová, J., Pysek, P. 2020: Robinia pseudoacacia-dominated vegetation types of Southern Europe: Species composition, history, distribution and man-agement. Sci. Total Environ. 707, 134857. DOI: https://doi.org/10.1016/j.scitotenv.2019.134857

Vítková, M., Tonika, J., Müllerová, J. 2015: Black locust–Successful invader of a wide range of soil condi-tions. Sci. Total Environ. 505: 315–328. DOI: https://doi.org/10.1016/j.scitotenv.2014.09.104

Wang, B., Liu, G., Xue, S. 2012: Effect of black locust (Robinia pseudoacacia) on soil chemical and microbio-logical properties in the eroded hilly area of China’s Loess Plateau. Environ. Earth Sci. 65: 597–607. DOI: https://doi.org/10.1007/s12665-011-1107-8

Veröffentlicht

2024-12-29

Ausgabe

Rubrik

Cikkek

Zitationsvorschlag

The impact of ungulate browsing on black locust competitive abilities in a temperate oak forest. (2024). TÁJÖKOLÓGIAI LAPOK, 22(2), 43-62. https://doi.org/10.56617/tl.6535

Ähnliche Artikel

1-10 von 255

Sie können auch eine erweiterte Ähnlichkeitssuche starten für diesen Artikel nutzen.

Am häufigsten gelesenen Artikel dieser/dieses Autor/in

1 2 3 4 5 6 7 > >>