Egy idős fasor talajtulajdonságai közötti kapcsolatok értékelése, és összefüggése a fa állománysűrűségével és törzskerületével

Szerzők

  • Malihe Masoudi Institute of Natural Resources Management, Szent István University, 2100-Gödöllő, Páter K. u. 1., Hungary
  • Vona Viktória Csernozjom Ltd., 5065 Nagykörű, Arany János u. 10. Hungary
  • Vona Márton Csernozjom Ltd., 5065 Nagykörű, Arany János u. 10. Hungary

DOI:

https://doi.org/10.56617/tl.3431

Kulcsszavak:

szerves szén, művelés nélküli talaj összes nitrogén-tartalma, talaj-növény összefüggés

Absztrakt

Besides, this study shows that the plots containing more trees and with a higher trunk circumference have more soil organic carbon and total N, and it is shown that the tree trunk circumference has a more significant correlation with these two soil properties. Egy józsefmajori fasorban vizsgáltuk a fasűrűség és a törzskerület közötti összefüggését a talaj kémiai tulajdonságaival. Mértük a talaj különböző kémiai tulajdonságai közötti összefüggést. Az összehasonlítás érdekében 24 parcellán (6m×13m) vettünk mintát 0–10 cm talajmélységből. Minden parcellán megmértük a fasűrűséget és a törzskerületeket. A talaj kémiai tulajdonságainak becslésére Near-Infrared spektrométer technikát (Wavelength Range: 1300–2600nm MEMS (Micro ElectroMechanical Systems) technológia) alkalmaztunk. Lineáris regressziót (Pearson és Spearman korrelációs analízis) alkalmaztunk két, többváltozós adatsor közötti összefüggések vizsgálatára, fa sűrűsége és a törzskerülete került összehasonlításra a talaj tulajdonságaival. Az eredmények szignifikáns kapcsolatot mutattak ki a talaj egyes kémiai paraméterei között, különösen a talaj szerves szén- (SOC) és az összes nitrogén-tartalma között, valamint a kationcsere kapacitás (CEC) és a SOC és az összes N között, ami nincs összhangban a korábbi tanulmányokkal. Ezen túlmenően ez a vizsgálat azt mutatja, hogy a több fát tartalmazó és nagyobb törzskerületű parcellákban több a talaj szerves szén- és össz-N-tartalma, és kimutatható, hogy a fatörzs kerülete szignifikánsabb összefüggésben van ezzel a két talajtulajdonsággal.

Szerző életrajzok

  • Malihe Masoudi, Institute of Natural Resources Management, Szent István University, 2100-Gödöllő, Páter K. u. 1., Hungary

    Magyar Agrár- és Élettudományi Egyetem, Szent István Campus
    2100-Gödöllő, Páter K. u. 1., Hungary

    Masoudim65@gmail.com

  • Vona Viktória, Csernozjom Ltd., 5065 Nagykörű, Arany János u. 10. Hungary

    Csernozjom Ltd.,
    5065 Nagykörű, Arany János u. 10. Hungary

    vonaviki@gmail.com

  • Vona Márton, Csernozjom Ltd., 5065 Nagykörű, Arany János u. 10. Hungary

    Csernozjom Ltd.,
    5065 Nagykörű, Arany János u. 10. Hungary

    vona.marton@gmail.com

Hivatkozások

Barczi, A., Centeri, Cs. 2005: Az erózió és a defláció tendenciái Magyarországon. In: Stefanovits, P., Michéli, E. (szerk.) A talajok jelentősége a 21. században. Budapest, Magyarország : MTA Talajtani és Agrokémiai Kutatóintézet pp. 221-244.

Barczi A., Penksza K., Grónás V., Pottyondi Á. 2006: A Nyugat-magyarországi régió felhagyott szántóinak felmérése és újbóli használatuk megalapozása (általános irányelvek, Zalai-dombsági példák) I. Tájökológiai Lapok, 4(1): 79-94.

Boecker, D., Centeri, Cs., Welp, G., Möseler, B. M. 2015: Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica, 50(2): 91-106. https://doi.org/10.1007/s12224-015-9210-3

Cha, J. Y., Cha, Y., Oh, N. H. 2019: The effects of tree species on soil organic carbon content in South Korea. Journal of Geophysical Research: Biogeosciences, 124(3): 708-716. https://doi.org/10.1029/2018JG004808

Casals, P., Romero, J., Rusch, G. M., Ibrahim, M. 2014: Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopasture. Plant and Soil, 374(1-2): 643-659. https://doi.org/10.1007/s11104-013-1884-9

Centeri, Cs. 2002: The role of vegetation cover in the control of soil erosion on the Tihany Peninsula. Acta Botanica Hungarica, 44(3-4): 285-295. https://doi.org/10.1556/ABot.44.2002.3-4.7

Centeri Cs., Császár A. 2005: A felszínborítás, a lejtőszakasz és a foszfor kapcsolata. Tájökológiai Lapok, 3(1): 119-131.

Centeri, Cs., Grónás, V., Demény, K., Idei, Sz., Penksza, K., Nagy, A. 2012: Interrelation of Land Use Change, Nature Conservation and Urbanization in the Gödöllő Hillside, Hungary. In: E. Turunen; A. Koskinen (szerk.) Urbanization and the Global Environment. New York (NY), Amerikai Egyesült Államok: Nova Science Publishers, pp. 1-50.

Centeri, Cs., Pataki, R. 2003: Hazai talajerodálhatósági értékek meghatározásának fontossága a talajveszteség tolerancia értékek tükrében. Tájökológiai Lapok, 1(2): 181-192.

Chorom, M., Rengasamy, P., Murray, R. S. 1994: Clay dispersion as influenced by pH and net particle charge of sodic soils. Soil Research, 32(6): 1243-1252. https://doi.org/10.1071/SR9941243

Csorba, P., Ádám, Sz., Bartos-Elekes, Zs., Bata, T., Bede-Fazekas, Á., Czúcz, B., Csima, P., Csüllög, G., Fodor, N., Frisnyák, S. et al. 2018: Landscapes. In: Kocsis, K., Gercsák, G., Horváth, G., Keresztesi, Z., Nemerkényi, Zs. (eds.): National atlas of Hungary: volume 2. Natural environment. Geographical Institute, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary. pp. 112-129.

Efretuei, A. 2016: The Soils Cation Exchange Capacity and its Effect on Soil Fertility. https://www.permaculturenews.org/2016/10/19/soils-cation-exchange-capacity-effect-soil-fertility/ (accessed at 1/10/2020)

Edmondson, J. L., Davies, Z. G., McCormack, S. A., Gaston, K. J., Leake, J. R. 2014: Land-cover effects on soil organic carbon stocks in a European city. Science of the Total Environment, 472: 444-453. https://doi.org/10.1016/j.scitotenv.2013.11.025

Fu, X., Shao, M., Wei, X., Horton, R. 2010: Soil organic carbon and total nitrogen as affected by vegetation types in the Northern Loess Plateau of China. Geoderma, 155:31-35. https://doi.org/10.1016/j.geoderma.2009.11.020

Fang, K., Kou, D., Wang, G., Chen, L., Ding, J., Li, F., Yang, G., Qin, S., Liu, L., Zhang, Q., Yang, Y. 2017: Decreased Soil Cation Exchange Capacity Across Northern China's Grasslands Over the Last Three Decades. Journal of Geophysical Research: Biogeosciences, 122(11): 3088-3097. https://doi.org/10.1002/2017JG003968

Goebes, P., Schmidt, K., Seitz, S., Both, S., Bruelheide, H., Erfmeier, A., Scholten, T., Kühn, P. 2019: The strength of soil-plant interactions under forest is related to a Critical Soil Depth. Scientific Reports, 9(1): 1-12. https://doi.org/10.1038/s41598-019-45156-5

Grónás V., Centeri Cs., Magyari J., Belényesi M. 2006: Agrár-környezetgazdálkodási programok hatása a kijelölt mintaterületek földhasználatára és természeti értékeinek védelmére. Tájökológiai Lapok, 4(2): 277-289.

Hou, E., Chen, C., Wen, D., Liu, X. 2014: Relationships of phosphorus fractions to the organic carbon content in surface soils in mature subtropical forests, Dinghushan, China. Soil Research, 52(1): 55-63. https://doi.org/10.1071/SR13204

Hoosbeek, M. R., Remme, R. P., Rusch, G. M. 2018: Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agroforestry Systems, 92(2): 263-273.

Islam, M., Dey, A., Rahman, M. 2015: Effect of tree diversity on soil organic carbon content in the home garden agroforestry system of North-Eastern Bangladesh. Small-scale Forestry, 14(1): 91-101. https://doi.org/10.1007/s11842-014-9275-5

Jakab, G., Rieder, Á., Vancsik, A., Szalai, Z. 2018: Soil organic matter characterisation by photometric indices or photon correlation spectroscopy: are they comparable? Hungarian Geographical Bulletin, 67(2): 109-120. https://doi.org/10.15201/hungeobull.67.2.1

Jakab, G., Szabó, J., Szalai, Z., Mészáros, E., Madarász, B., Centeri, Cs., Szabó, B., Németh, T., Sipos, P. 2016: Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environmental Earth Sciences, 75(2): 144-154. https://doi.org/10.1007/s12665-015-5052-9

Jhariya, M. K., Yadav, D. K., Banerjee, A. (Eds.). 2019: Agroforestry and Climate Change: Issues and Challenges. CRC Press. Pp 336 https://doi.org/10.1201/9780429057274

Kamprath, E. J., Welch, C. D. 1962: Retention and Cation‐Exchange Properties of Organic Matter in Coastal Plain Soils. Soil Science Society of America Journal, 26(3): 263-265. https://doi.org/10.2136/sssaj1962.03615995002600030021x

Kohlheb N., Podmaniczky L., Pirkó B., Centeri Cs., Balázs K., Grónás V. 2014: Új irányok a talaj- és vízvédelemben. A Falu, 29(4): 67-76.

Kozak, M., Stêpieñ, M., Joarder, A. H. 2005: Relationships between available and exchangeable potassium content and other soil properties. Polish Journal of Soil Science, 38(2): 179-186.

Liu, Y., Li, S., Sun, X., Yu, X. 2016: Variations of forest soil organic carbon and its influencing factors in east China. Annals of forest science, 73(2): 501-511. https://doi.org/10.1007/s13595-016-0543-8

Lemanowicz, J. 2018: Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environmental Science and Pollution Research, 25(33): 33773-33782. https://doi.org/10.1007/s11356-018-3348-5

Londo, A. J., Kushla, J. D., Carter, R. C. 2006: Soil pH and tree species suitability in the south. Southern Regional Extension Forestry, 2: 1-5.

Medinski, T. 2007: Soil chemical and physical properties and their influence on the plant species richness of arid South-West Africa (Doctoral dissertation, Stellenbosch: University of Stellenbosch). https://core.ac.uk/download/pdf/37321053.pdf (accessed at 1/10/2020)

Novak, E., Carvalho, L. A. D., Santiago, E. F., Tomazi, M. 2019: Changes in the soil structure and organic matter dynamics under different plant covers. Cerne, 25 (2): 230-239. https://doi.org/10.1590/01047760201925022618

NRCS, U. 1998: Soil Quality Information Sheet, Soil Quality Indicators: PH. Availble online at: http://www.nrcs.usda.gov (accessed 12 March 2021).

Oelmann, Y., Potvin, C., Mark, T., Werther, L., Tapernon, S., Wilcke, W. 2010: Tree mixture effects on aboveground nutrient pools of trees in an experimental plantation in Panama. Plant and Soil, 326(1-2): 199-212. https://doi.org/10.1007/s11104-009-9997-x

Olson, K. R., Gennadiyev, A. N., Zhidkin, A. P., Markelov, M. V. 2011: Impact of land-use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions. Soil Science, 176(9): 449-458. https://doi.org/10.1097/SS.0b013e3182285cde

Osher, L.J., Buol, S.W. 1998: Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma, 83: 143-166. https://doi.org/10.1016/S0016-7061(97)00133-X

Rieder, Á., Madarász, B., Szabó, J A., Zacháry, D., Vancsik, A., Ringer, M., Szalai, Z., Jakab, G. 2018: Soil organic matter alteration velocity due to land-use change: a case study under conservation agriculture. Sustainability, 10(4): 943. https://doi.org/10.3390/su10040943

Rhoades, C. C. 1996: Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agroforestry Systems, 35(1): 71-94. https://doi.org/10.1007/BF02345330

Sharififar, A., Singh, K., Jones, E., Ginting, F. I., Minasny, B. 2019: Evaluating a low‐cost portable NIR spectrometer for the prediction of soil organic and total carbon using different calibration models. Soil Use and Management, 35 (4): 607-616. https://doi.org/10.1111/sum.12537

Stumpf, F., Keller, A., Schmidt, K., Mayr, A., Gubler, A., Schaepman, M. 2018: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems. Agriculture, Ecosystems & Environment, 258: 129-142. https://doi.org/10.1016/j.agee.2018.02.012

Smith, P. 2008: Land-use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2): 169-178. https://doi.org/10.1007/s10705-007-9138-y

Syers, J. K., Campbell, A. S., Walker, T. W. 1970: Contribution of organic carbon and clay to cation exchange capacity in a chronosequence of sandy soils. Plant and Soil, 33(1-3): 104-112. https://doi.org/10.1007/BF01378202

Singh, G., Goyne, K. W., Kabrick, J. M. 2015: Determinants of total and available phosphorus in forested Alfisols and Ultisols of the Ozark Highlands, USA. Geoderma Regional, 5: 117-126. https://doi.org/10.1016/j.geodrs.2015.05.001

Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., Schmidt, M. W. 2020: A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Frontiers in Forests and Global Change, 3: 98-100. https://doi.org/10.3389/ffgc.2020.00098

Szalai, Z., Szabó, J., Kovács, J., Mészáros, E., Albert, G., Centeri, Cs., Szabó, B., Madarász, B., Zacháry, D., Jakab, G. 2016: Redistribution of soil organic carbon triggered by erosion at field scale under subhumid climate, Hungary. Pedosphere, 26(5): 652-665. https://doi.org/10.1016/S1002-0160(15)60074-1

Tomlinson, R. W. 2005: Soil carbon stocks and changes in the Republic of Ireland. Journal of Environmental Management, 76(1): 77-93. https://doi.org/10.1016/j.jenvman.2005.02.001

Wang, S., Wang, X., Ouyang, Z. 2012: Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China. Journal of Environmental Sciences, 24(3): 387-395. https://doi.org/10.1016/S1001-0742(11)60789-4

White, R. E: 2013: Principles and practice of soil science: the soil as a natural resource. John Wiley & Sons.

WRB 2015: World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. FAO, Rome.

Xue, Z., An, S. 2018: Changes in Soil Organic Carbon and Total Nitrogen at a Small Watershed Scale as the Result of Land Use Conversion on the Loess Plateau. Sustainability, 10(12): 4757. https://doi.org/10.3390/su10124757

Zacháry, D., Filep, T., Jakab, G., Varga, G., Ringer, M., Szalai, Z. 2018: Kinetic parameters of soil organic matter decomposition in soils under forest in Hungary. Geoderma Regional, 14. UNSP e00187 https://doi.org/10.1016/j.geodrs.2018.e00187

Ziadi, N., Whalen, J. K., Messiga, A. J., Morel, C. 2013: Assessment and modeling of soil available phosphorus in sustainable cropping systems. In Advances in Agronomy. Academic Press, 122: 85-126. https://doi.org/10.1016/B978-0-12-417187-9.00002-4

Letöltések

Megjelent

2021-11-15

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Egy idős fasor talajtulajdonságai közötti kapcsolatok értékelése, és összefüggése a fa állománysűrűségével és törzskerületével. (2021). TÁJÖKOLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 19(2), 81-89. https://doi.org/10.56617/tl.3431

Hasonló cikkek

61-70 a 163-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei