Decomposition dynamics of Phragmites australis leaves, stalks and rhizomes in the area of Lake Balaton and Kis-Balaton Wetland
Kulcsszavak:
Phragmites australis, Balaton, Kis-Balaton, avarlebontásAbsztrakt
A növényi anyag bomlása fontos mechanizmusa az ökoszisztémák energia- és tápanyagdinamikájának. 230 napos kísérletben vizsgáltuk a közönséges nád (Phragmites australis) három növényi részének (levél, szár és rizóma) lebontási ütemét és a visszamaradt teljes nitrogén és foszfor mennyiségét a Balaton (tó) és a Kis-Balaton (wetland) területén. A kísérlet során avarzsákos módszert alkalmaztunk, két lyukbőséggel (avarzsák lyukátmérő ø = 3 mm és planktonháló zsák lyukátmérő ø = 900 µm). A nád növényi részeinek tömegvesztése általában nem különbözött a két lyukbőségű zsák és a kísérleti területek között. A bomlási sebesség a leggyorsabb a rizóma esetében volt (k = 0,0051), míg a szárnál figyeltük meg a legalacsonyabb értékeket (k = 0,0004). A vizsgálati időszak végén a nád három növényrészében mért visszamaradt tápanyag-koncentráció eltérő volt. A balatoni nád szár esetében a nitrogén és a foszfor magasabb volt, mint a kezdeti koncentráció. A levél és a rizóma esetében csökkenés volt megfigyelhető.
Hivatkozások
Anda, A., Soós, G., Teixeira da Silva, J. A. 2017. Leaf area index for common reed (Phragmites australis) with different water supplies in the Kis-Balaton wetland, Hungary, during two consecutive seasons (2014 and 2015). Időjárás. 121 (3) 265–284.
Bärlocher, F. 2005. Leaf Mass Loss Estimated by Litter Bag Technique. In: Graça, M.A.S., Bärlocher, F. and Gessner, M.O., Eds., Methods to Study Litter Decomposition, a Practical Guide, Springer, Dordrecht. 37–42. https://doi.org/10.1007/1-4020-3466-0_6
Correll, D. L. 1998. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 27 (2) 261–266. https://doi.org/10.2134/jeq1998.00472425002700020004x
Crossetti, L. O., Stenger-Kovács, C., Padisák, J. 2013. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia. 716. 87–101. https://doi.org/10.1007/s10750-013-1547-0
Dahrouga, Z., Santana, N. F., Pagioro, T. A. 2016. Eichhornia azurea decomposition and the bacterial dynamic: an experimental research. Brazilian Journal of Microbiology. 47 (2) 279–286. https://doi.org/10.1016/j.bjm.2015.08.001
Dill, W. A. 1990: Inland fisheries of Europe. EIFAC Technical Paper. No. 52. Rome, FAO
Duke, S. T., Francoeur, S. N., Judd, K. E. 2015. Effects of Phragmites australis Invasion on Carbon Dynamics in a Freshwater Marsh. Wetlands. 35. 311–321. https://doi.org/10.1007/s13157-014-0619-x
Enríquez, S., Duarte, C. M., Sand-Jensen, K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content .Oecologia. 94. 457–471. https://doi.org/10.1007/BF00566960
Esteves, F. A. 1988. Fundamentos da Limnologia. Rio de Janeiro:Interciência/FINEP, Rio de Janeiro.
Faye, L. M., Beth, R. L., Ormerod, S. J. 2006. The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia. 571. 373–381. https://doi.org/10.1007/s10750-006-0269-y
Findlay, S. E. G., Dye, S., Kuehn, K. A. 2002. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands. 22. 616–625. https://doi.org/10.1672/0277-5212(2002)022[0616:MGANRI]2.0.CO;2
Gaudet, J. J., Muthuri F. M. 1981. Nutrient relationships in shallow water in an African lake, Lake Naivasha. Oecologia. 49. 109–118. https://doi.org/10.1007/BF00376907
Jenny, H., Gessel, S. P., Bingham, F. T., 1949. Comparative study of decomposition rates in temperate and tropical regions. Soil Sci. 68 (6) 419–432. https://doi.org/10.1097/00010694-194912000-00001
Köchy, M., Wilson, S. D. 1997. Litter decomposition and nitrogen dynamics in Aspen forest and mixed-grass prairie. Ecology. 78 (3) 732–739. https://doi.org/10.1890/0012-9658(1997)078[0732:LDANDI]2.0.CO;2
Lee, A. A., Bukaveckas, P. A. 2002. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquat. Bot. 74 (4) 273–285. https://doi.org/10.1016/S0304-3770(02)00128-6
Olson, J. S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44 (2) 322–331. https://doi.org/10.2307/1932179
Ozalp, M., Conner, W. H., Lockaby, B. G. 2007. Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA. Forest Ecol. Manage. 245 (1-3) 31–43. https://doi.org/10.1016/j.foreco.2007.03.063
Pagioro, T. A., Thomaz, S. M. 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Paraná River River floodplain. Hydrobiologia. 411. 45–51. https://doi.org/10.1023/A:1003839704084
Pozo, J. 1993. Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain). I. Chemical changes. Archiv für Hydrobiologie. 127 (3) 299–317. https://doi.org/10.1127/archiv-hydrobiol/127/1993/299
Raposeiro, P. M, Ferreira, V., Guri, R., Goncalves, V., Martins, G. M. 2017. Leaf litter decomposition on insular lentic systems: effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia. 784. 65–79. https://doi.org/10.1007/s10750-016-2852-1
Reddy, K. R., Sacco P. D. 1981. Decomposition of water hyacinth in agricultural drainage water. Journal of Environmental Quality. 10 (2) 228–234. https://doi.org/10.2134/jeq1981.00472425001000020022x
Rothman, E., Bouchard, V. 2007. Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland. Wetlands. 27. 1134–1143. https://doi.org/10.1672/0277-5212(2007)27[1134:ROCPBM]2.0.CO;2
Schaller, J., Böttger, R., Dudel, G., Ruess, L. 2016. Reed litter Si content affects microbial community structure and the lipid composition of an invertebrate shredder during aquatic decomposition. Limnologica. 57. 14–22. https://doi.org/10.1016/j.limno.2015.12.002
Twilley, R. R., Lugo, A. E., Patterson-Zucca, C. 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology. 67 (3) 670–683. https://doi.org/10.2307/1937691
Vymazal, J. 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering. 25 (5) 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.010
Zhang, L. H. , Tong, C., Marrs, R., Wang, T. E., Zhang, W. J. , Zeng C. S. 2014. Comparing litter dynamics of Phragmites australis and Spartinaa alterniflora in a subtropical Chinese estuary: Contrasts in early and late decomposition. Aquatic Botany. 117. 1–11. https://doi.org/10.1016/j.aquabot.2014.03.003
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2019 Simon Brigitta, Simon Szabina, Kucserka Tamás, Anda Angéla

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.