Decomposition dynamics of Phragmites australis leaves, stalks and rhizomes in the area of Lake Balaton and Kis-Balaton Wetland
Keywords:
Phragmites australis, Lake Balaton, Kis-Balaton Wetland, leaf litter decompositionAbstract
The decomposition of plant litter is an important mechanism in regard to energy and nutrient dynamics of ecosystems. The decomposition dynamics of three plant parts of Phragmites australis (leaves, stalks and rhizomes) and the changes of total nitrogen and phosphorous concentrations were examined in Lake Balaton and Kis-Balaton Wetland for 230 days. The commonly applied litter bag technique was used, with two mesh sizes (litter bag mesh sizes ø = 3 mm; and plankton net bag mesh sizes ø = 900 µm). Leaf litter mass loss generally did not differ between the two mesh sizes and the study sites. The highest decomposition rates were observed at rhizomes (k=0.0051) and the slowest at stalks (k=0.0004). At the end of the investigation period, the remaining nutrient concentration was different in the three plant parts of P. australis. Nitrogen and phosphorous at the stalks in Lake Balaton was higher compared to the initial concentration. In the case of the leaves and rhizomes a decrease was observed.
References
Anda, A., Soós, G., Teixeira da Silva, J. A. 2017. Leaf area index for common reed (Phragmites australis) with different water supplies in the Kis-Balaton wetland, Hungary, during two consecutive seasons (2014 and 2015). Időjárás. 121 (3) 265–284.
Bärlocher, F. 2005. Leaf Mass Loss Estimated by Litter Bag Technique. In: Graça, M.A.S., Bärlocher, F. and Gessner, M.O., Eds., Methods to Study Litter Decomposition, a Practical Guide, Springer, Dordrecht. 37–42. https://doi.org/10.1007/1-4020-3466-0_6
Correll, D. L. 1998. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 27 (2) 261–266. https://doi.org/10.2134/jeq1998.00472425002700020004x
Crossetti, L. O., Stenger-Kovács, C., Padisák, J. 2013. Coherence of phytoplankton and attached diatom-based ecological status assessment in Lake Balaton. Hydrobiologia. 716. 87–101. https://doi.org/10.1007/s10750-013-1547-0
Dahrouga, Z., Santana, N. F., Pagioro, T. A. 2016. Eichhornia azurea decomposition and the bacterial dynamic: an experimental research. Brazilian Journal of Microbiology. 47 (2) 279–286. https://doi.org/10.1016/j.bjm.2015.08.001
Dill, W. A. 1990: Inland fisheries of Europe. EIFAC Technical Paper. No. 52. Rome, FAO
Duke, S. T., Francoeur, S. N., Judd, K. E. 2015. Effects of Phragmites australis Invasion on Carbon Dynamics in a Freshwater Marsh. Wetlands. 35. 311–321. https://doi.org/10.1007/s13157-014-0619-x
Enríquez, S., Duarte, C. M., Sand-Jensen, K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content .Oecologia. 94. 457–471. https://doi.org/10.1007/BF00566960
Esteves, F. A. 1988. Fundamentos da Limnologia. Rio de Janeiro:Interciência/FINEP, Rio de Janeiro.
Faye, L. M., Beth, R. L., Ormerod, S. J. 2006. The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia. 571. 373–381. https://doi.org/10.1007/s10750-006-0269-y
Findlay, S. E. G., Dye, S., Kuehn, K. A. 2002. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands. 22. 616–625. https://doi.org/10.1672/0277-5212(2002)022[0616:MGANRI]2.0.CO;2
Gaudet, J. J., Muthuri F. M. 1981. Nutrient relationships in shallow water in an African lake, Lake Naivasha. Oecologia. 49. 109–118. https://doi.org/10.1007/BF00376907
Jenny, H., Gessel, S. P., Bingham, F. T., 1949. Comparative study of decomposition rates in temperate and tropical regions. Soil Sci. 68 (6) 419–432. https://doi.org/10.1097/00010694-194912000-00001
Köchy, M., Wilson, S. D. 1997. Litter decomposition and nitrogen dynamics in Aspen forest and mixed-grass prairie. Ecology. 78 (3) 732–739. https://doi.org/10.1890/0012-9658(1997)078[0732:LDANDI]2.0.CO;2
Lee, A. A., Bukaveckas, P. A. 2002. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquat. Bot. 74 (4) 273–285. https://doi.org/10.1016/S0304-3770(02)00128-6
Olson, J. S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44 (2) 322–331. https://doi.org/10.2307/1932179
Ozalp, M., Conner, W. H., Lockaby, B. G. 2007. Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA. Forest Ecol. Manage. 245 (1-3) 31–43. https://doi.org/10.1016/j.foreco.2007.03.063
Pagioro, T. A., Thomaz, S. M. 1999. Decomposition of Eichhornia azurea from limnologically different environments of the Paraná River River floodplain. Hydrobiologia. 411. 45–51. https://doi.org/10.1023/A:1003839704084
Pozo, J. 1993. Leaf litter processing of alder and eucalyptus in the Agüera stream system (North Spain). I. Chemical changes. Archiv für Hydrobiologie. 127 (3) 299–317. https://doi.org/10.1127/archiv-hydrobiol/127/1993/299
Raposeiro, P. M, Ferreira, V., Guri, R., Goncalves, V., Martins, G. M. 2017. Leaf litter decomposition on insular lentic systems: effects of macroinvertebrate presence, leaf species, and environmental conditions. Hydrobiologia. 784. 65–79. https://doi.org/10.1007/s10750-016-2852-1
Reddy, K. R., Sacco P. D. 1981. Decomposition of water hyacinth in agricultural drainage water. Journal of Environmental Quality. 10 (2) 228–234. https://doi.org/10.2134/jeq1981.00472425001000020022x
Rothman, E., Bouchard, V. 2007. Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland. Wetlands. 27. 1134–1143. https://doi.org/10.1672/0277-5212(2007)27[1134:ROCPBM]2.0.CO;2
Schaller, J., Böttger, R., Dudel, G., Ruess, L. 2016. Reed litter Si content affects microbial community structure and the lipid composition of an invertebrate shredder during aquatic decomposition. Limnologica. 57. 14–22. https://doi.org/10.1016/j.limno.2015.12.002
Twilley, R. R., Lugo, A. E., Patterson-Zucca, C. 1986. Litter production and turnover in basin mangrove forests in southwest Florida. Ecology. 67 (3) 670–683. https://doi.org/10.2307/1937691
Vymazal, J. 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering. 25 (5) 478–490. https://doi.org/10.1016/j.ecoleng.2005.07.010
Zhang, L. H. , Tong, C., Marrs, R., Wang, T. E., Zhang, W. J. , Zeng C. S. 2014. Comparing litter dynamics of Phragmites australis and Spartinaa alterniflora in a subtropical Chinese estuary: Contrasts in early and late decomposition. Aquatic Botany. 117. 1–11. https://doi.org/10.1016/j.aquabot.2014.03.003
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Simon Brigitta, Simon Szabina, Kucserka Tamás, Anda Angéla

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).