An AI-driven image processing technique to simplify the pollen measurement in common ragweed (Ambrosia artemisiifolia L.)
DOI:
https://doi.org/10.70809/6570Keywords:
Automated measurement, Image dataset, Digital image processing, Alien species, Palynology, Model training, Artificial intelligence, Machine learningAbstract
Ambrosia artemisiifolia (common ragweed) is an invasive weed species that significantly impacts agriculture and public health. This study aimed to develop an automated AI-based object detection model using our annotated image recognition dataset for accurate pollen size measurement, focusing on repeatability and variability in pollen size among individuals with distinct morphological characteristics. The model can effectively streamline the traditionally labour-intensive process, achieving rapid, accurate data collection. Roboflow-based image analysis takes only milliseconds, which is significantly faster than traditional approaches, and a high repeatability index demonstrates a valid methodology for pollen analysis. The study suggests a relationship between pollen size variability and plant morphology, suggesting possible trade-offs between growth and reproduction or showing habitat-specific adaptations. Results may create valuable opportunities for plant biology or ecology, for instance, further investigation of plant-pathogen interactions and public health research. This innovative method represents a step forward in efficient pollen analysis and its integration into multidisciplinary studies.
References
Bates, D., Mächler, M., Bolker, B. and Walker, S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. 67 (1) 1–48. https://doi.org/10.18637/jss.v067.i01
Buttenschøn, R., Waldispühl, C. B. 2010. Guidelines for management of common ragweed, Ambrosia artemisiifolia. http://www.EUPHRESCO.org
Costa, C. M. and Yang, S. 2009. Counting pollen grains using readily available, free image processing and analysis software. Annals of Botany. 104 (5) 1005–1010. https://doi.org/10.1093/aob/mcp186
Dwyer, B., Nelson, J., Hansen, T. et al. 2024. Roboflow (Version 1.0) [Software]. In https://roboflow.com
Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software. 33 (2) 1–22. https://doi.org/10.18637/jss.v033.i02
Kocsis, I., Petróczy, M., Takács, K. Z. and Markó, G. 2022. Stimulation role of pollen grains in the initial development of Botrytis cinerea: The importance of host compatibility, cultivation status and pollen size. Journal of Phytopathology. 170 (11–12) 828–837. https://doi.org/10.1111/jph.13149
Langford, M., Taylor, G. E. and Flenley, J. R. 1990. Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology. 64 (1) 197–203. https://doi.org/10.1016/0034-6667(90)90133-4
Leiblein-Wild, M. C., Kaviani, R. and Tackenberg, O. 2014. Germination and seedling frost tolerance differ between the native and invasive range in common ragweed. Oecologia. 174 (3) 739–750. https://doi.org/10.1007/s00442-013-2813-6
Nakahara, T., Fukano, Y., Hirota, S. K. and Yahara, T. 2018. Size advantage for male function and size-dependent sex allocation in Ambrosia artemisiifolia, a wind-pollinated plant. Ecology and Evolution. 8 (2) 1159–1170. https://doi.org/https://doi.org/10.1002/ece3.3722
Rodrigues, C., Barbosa Goncalves, A., Silva, G. and Pistori, H. 2015. Evaluation of Machine Learning and Bag of Visual Words Techniques for Pollen Grains Classification. IEEE Latin America Transactions. 13 3498–3504. https://doi.org/10.1109/TLA.9907
Sam, S., Halbritter, H. and Heigl, H. 2020. Ambrosia artemisiifolia PalDat - A palynological database. https://www.paldat.org/pub/Ambrosia_artemisiifolia/304617
Taramarcaz, P., Lambelet, B., Clot, B., Keimer, C. and Hauser, C. 2005. Ragweed (Ambrosia) progression and its health risks: Will Switzerland resist this invasion? Swiss medical weekly. 135 538–548. https://doi.org/10.4414/smw.2005.11201
Van Wychen, L. 2017. 2017 Survey of the Most Common and Troublesome Weeds in Broadleaf Crops, Fruits, and Vegetables. https://wssa.net/wp-content/uploads/2017-Weed-Survey_Grass-crops.xlsx
Vaudo, A. D., Tooker, J. F., Patch, H. M., Biddinger, D. J., Coccia, M., Crone, M. K., Fiely, M., Francis, J. S., Hines, H. M., Hodges, M., Jackson, S. W., Michez, D., Mu, J., Russo, L., Safari, M., Treanore, E. D., Vanderplanck, M., Yip, E., Leonard, A. S. and Grozinger, C. M. 2020. Pollen Protein: Lipid Macronutrient Ratios May Guide Broad Patterns of Bee Species Floral Preferences. Insects. 11 (2). 132. https://doi.org/10.3390/insects11020132
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Scherman Jakab Máté, Petróczy Marietta, Szathmáry Erzsébet, Markó Gábor
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).