Ribavirin alkalmazása a szőlő vírusmentesítésében

Authors

  • Mihály Turcsán NAIK Szőlészeti és Borászati Kutatóintézet Kecskeméti Kutató Állomás, e-mail: turcsan.mihaly@szbki.naik.hu (correspondence)
  • Emese Demián NAIK Mezőgazdasági Biotechnológiai Kutatóintézet
  • Krisztina Oláh NAIK Szőlészeti és Borászati Kutatóintézet Kecskeméti Kutató Állomás
  • Éva Várallyay NAIK Mezőgazdasági Biotechnológiai Kutatóintézet https://orcid.org/0000-0002-9085-942X
  • Róbert Oláh NAIK Szőlészeti és Borászati Kutatóintézet Kecskeméti Kutató Állomás

Keywords:

grapevine virus elimination, ribavirin, chemotherapy, micropropagation

Abstract

Producing pathogen-free grapevine propagation material has a critical importance to prevent the spread of infectious diseases. Ribavirin is an antiviral agent is used in elimination processes, and its application was effective against several RNA viruses in different plant species. During our experiment the effect of chemotherapy on grapevine viruses was investigated in case of some grapevine cultivars. Ribavirin treatment of Vitis vinifera cv. Sárfehér was successful for eliminating Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine Pinot gris virus (GPGV) and Grapevine Syrah virus-1 (GSyV-1), therefore we tested efficiency of this method on some other cultivars infected with other viruses.

References

Chauhan, P., Singla, K., Rajbhar, M., Singh, A., Das, N. and Kumar, K. 2019. A systematic reviewof conventional and advanced approaches for the control of plant viruses. Journal of Applied Biology & Biotechnology 7. 4. 89–98. https://doi.org/10.7324/JABB.2019.70414

Crotty, S., Cameron, C. and Andino, R. 2002. Ribavirin's antiviral mechanism of action: lethal mutagenesis?. Journal of molecular medicine, 80. 2. 86–95. https://doi.org/10.1007/s00109-001-0308-0 PMid:11907645

Farkas, E. M., Czotter, N., Lózsa, R., Dula, T., Ember, I., Várallyay, É. and Szegedi, E. 2014. Conventional PCR primers for the detection of grapevine pathogens disseminated by propagating material. International Journal of Horticultural Science, 20. 3-4. 69–80. https://doi.org/10.31421/IJHS/20/3-4/1139

Guta, I. C. and Buciumeanu, E. C. 2011. Grapevine chemotherapy for elimination of multiple virus infection. Romanian Biotechnological Letters, 16. 5.

Komínek, P., Komínková, M. and Jandová, B. 2016. Effect of repeated Ribavirin treatment on grapevine viruses. Acta virologica, 60. 4. 400–403. https://doi.org/10.4149/av_2016_04_400 PMid:27928920

Martelli, G. P. 2017. An overview on grapevine viruses, viroids, and the diseases they cause. In: Meng, B., Martelli, G., Golino, D. and Fuchs, M. (eds): Grapevine Viruses: Molecular Biology, Diagnostics and Management. Springer, Cham, Bari, 698. 21–46. https://doi.org/10.1007/978-3-319-57706-7_2

Massart, S., Candresse, T., Gil, J., Lacomme, C., Predajna, L., Ravnikar, M., Reynard, J.-S., Rumbou, A., Saldarelli, P., Škorić, D., Vainio, E. J., Valkonen, J. P. T., Vanderschuren, H., Varveri, C. and Wetzel, T. 2017. A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Frontiers in Microbiology 8. 45. https://doi.org/10.3389/fmicb.2017.00045

Panattoni, A., Luvisi, A. and Triolo, E. 2013. Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research, 11. 1. 173–188. https://doi.org/10.5424/sjar/2013111-3201

San Pedro, T., Gammoudi, N., Peiró, R., Olmos, A. and Gisbert, C. 2017. Somatic embryogenesis from seeds in a broad range of Vitis vinifera L. varieties: rescue of true-to-type virus-free plants. BMC Plant Biology, 17. 1. 226. https://doi.org/10.1186/s12870-017-1159-3 PMid:29187140 PMCid:PMC5706158

Skiada, F. G., Maliogka, V. I., Katis, N. I. and Eleftheriou, E. P. 2013. Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. European journal of plant pathology, 135. 2. 407–414. https://doi.org/10.1007/s10658-012-0097-z

Xu, Q. Wen, X. and Deng, X. 2004. A simple protocol for isolating genomic DNA from chestnut rose (Rosa roxburghii Tratt) for RFLP and PCR analyses. Plant Molecular Biology Reporter, 22. 3. 301–302. https://doi.org/10.1007/BF02773140

Zok, A., Oláh, R., Hideg, E., Horváth, V. G., Kós, P. B., Majer, P., Varadi, Gy. and Szegedi, E. 2010. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell, Tissue and Organ Culture (PCTOC), 100. 3. 339–344. https://doi.org/10.1007/s11240-009-9641-8

Published

2020-03-06

Issue

Section

Articles