Monitoring the growth of Lactobacillus bulgaricus strains with different probiotic activity using physicochemical properties

Authors

Keywords:

probiotic, Lactobacillus bulgaricus, physico-chemical properties, growth

Abstract

The primary task of probiotics is protection against harmful substances. The most important probioticproducing microorganisms are lactic acid bacteria. Fermented foods are richer in flavour, more shelf-stable, and safer. Yogurts are fermented milk products that contain both Streptococcus thermophilus and Lactobacillus bulgaricus. Their regular consumption is beneficial for the immune system. In our research, we monitored the growth of 15 strains of Lactobacillus bulgaricus with different probiotic activities based on physico-chemical properties. Before the experiment, a calibration test was performed with one sample selected from each group. During the experiment, the pH, cell count, and viscosity were determined from freshly prepared milk products inoculated with activated strains kept for 11 hours at 37 °C. The inflection point of pH curves, pH, cell count, and viscosity values were determined at 4 and 11 hours, and at the inflection point of the pH curve. No significant differences for the 15 strains were found at either sampling time. The average number of colonies of the probiotic samples was the highest, but it was not significantly different from the other two groups. The viscosity of the probiotic strains at 4 and 11 hours was on average a third of the values of the other two groups, with significance. Looking at the viscosity values determined at the time of the inflection point of the pH curve, the non-probiotic strains had the highest and the probiotic strains had significantly the lowest value. Overall, it can be said that viscosity as a physical parameter can be suitable for separating strains showing different probiotic activities.

Author Biographies

  • TímeaK Kaszab, Hungarian University of Agriculture and Life Sciences

    Levelező szerző
    Egyetemi adjunktus
    Élelmiszertudományi és Technológiai Intézet, Élelmiszeripari Méréstechnika és Automatizálás Tanszék
    1118. Budapest, Ménesi út 43-45.
    kaszab.timea@uni-mate.hu

  • Boglárka Boda , Hungarian University of Agriculture and Life Sciences

    Egyetemi hallgató
    Élelmiszertudományi és Technológiai Intézet, Élelmiszer-mikrobiológia,-higiénia és -biztonság Tanszék
    1118. Budapest, Ménesi út 43-45.
    bodabogi5@gmail.com

  • Andrea Pomázi, Hungarian University of Agriculture and Life Sciences

    Egyetemi docens
    Élelmiszertudományi és Technológiai Intézet, Élelmiszer-mikrobiológia,-higiénia és -biztonság Tanszék
    1118. Budapest, Ménesi út 43-45.
    pomazi.andrea@uni-mate.hu

  • Csilla Mohácsiné Farkas, Hungarian University of Agriculture and Life Sciences

    Egyetemi docens
    Élelmiszertudományi és Technológiai Intézet, Élelmiszer-mikrobiológia,-higiénia és -biztonság Tanszék
    1118. Budapest, Ménesi út 43-45.
    mohacsine.farkas.csilla@uni-mate.hu

References

Costa, M.P., Frasao, B.S., O. Silva, A.C., Freitas, M.Q., M. Franco, R.M. and Conte-Junior, C.A. (2015): Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts Journal of Dairy Science, 98:1–9. https://doi.org/10.3168/jds.2015-9738

Cubas-Cano, E., González-Fernández, C., Ballesteros, M., Tomás-Pejó, E. (2018): Biotechnological advances in lactic acid production by lactic acid bacteria: lignocellulose as novel substrate. Biofuels, Bioproducts and Biorefining, 12(2):290-303. https://doi.org/10.1002/bbb.1852

Eş, I., Khaneghah, A.M., Barba, F.J., Saraiva, J.A., Sant'Ana, A.S., Hashemi, S.M.B. (2018): Recent advancements in lactic acid production-a review. Food Research International, 107:763-770. https://doi.org/10.1016/j.foodres.2018.01.001

Falade, K.O., Ogundele, O.M., Ogunshe, A.O., Fayemi, O.E., Ocloo, F.C. (2015): Physico-chemical, sensory and microbiological characteristics of plain yoghurt from bambara groundnut (Vigna subterranea) and soybeans (Glycine max). Journal of food science and technology, 52(9):5858-5865. https://doi.org/10.1007/s13197-014-1657-3

Figura, L., Teixeira, A.A. (2007): Food physics: physical properties-measurement and applications. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-34194-9

Isolauri, E., Sütas, Y., Kankaanpää, P., Arvilommi, H., Salminen, S. (2001): Probiotics: effects on immunity. The American Journal of Clinical Nutrition, 73(2):444- 450. https://doi.org/10.1093/ajcn/73.2.444s

Mousavia, M., Heshmatia, A., Garmakhanyb, A.D., Vahidiniaa, A., Taheria, M. (2019): Optimization of the viability of Lactobacillus acidophilus and physicochemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. LWT - Food Science and Technology, 102:80–88. https://doi.org/10.1016/j.lwt.2018.12.023

Mani-López, E., Palou, E., López-Malo, A. (2014): Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. Journal of Dairy Science, 97(5):2578-2. https://doi.org/10.3168/jds.2013-7551

Minto, M., Phebus, R.K., Schmidt, K.A. (2015): Plant extract enhances the viability of Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in probiotic nonfat yogurt. Food science & nutrition, 3(1)48-55. https://doi.org/10.1002/fsn3.189

Prescott, C.S., Breed, R.S. (1910): The determination of the number of body cells in milk by a direct method. The Journal of Infectious Diseases, 632-640. https://doi.org/10.1093/infdis/7.5.632

Pu, F., Guo, Y., Li, M., Zhu, H., Wang, S., Shen, X., ..., He, F. (2017): Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: a randomized controlled open-label trial. Clinical Interventions in Aging, 12:1223. https://doi.org/10.2147/cia.s141518

Slavchev, A., Kovacs, Z., Koshiba, H., Nagai, A., Bázár, G., Krastanov, A., ..., Tsenkova, R. (2015): Monitoring of water spectral pattern reveals differences in probiotics growth when used for rapid bacteria selection. PLOS One, 10(7):e0130698. https://doi.org/10.1371/journal.pone.0130698

Torrestiana B.S., Brito de la Fuente, E., Lacroix, C., Choplin, L. (1994): Modelling the acidifying activity profile of Lactobacillus bulgaricus cultures. Applied Microbiology and Biotechnology, 42:192–196. https://doi.org/10.1007/bf00186958

Published

2022-12-29

Issue

Section

Cikkek

How to Cite

Monitoring the growth of Lactobacillus bulgaricus strains with different probiotic activity using physicochemical properties. (2022). ÉLELMISZER, TUDOMÁNY, TECHNOLÓGIA, 72(1-2), 46-51. https://journal.uni-mate.hu/index.php/ett/article/view/4741