The effect of microwave pasteurization on the composition of milk. I. Amino acid composition, free amino acid content, biological value
Keywords:
milk, conventional pasteurization, microwave heat treatment, amino acid composition, free amino acid contentAbstract
The authors examined free amino acid and total amino acid content of milk samples pasteurized using different heat treatment procedures at a Dairy Company of Hargita county, using HPLC after derivatization with OPA/2-mercaptoethanol. They analyzed the effect of microwave treatment on the amino acids, free amino acid content and biological value compared to the conventional heat treatment technology. The amount of total essential amino acids was fully identical irrespective of whether it was about untreated raw milk or milk heat treated in different ways. Sulfur amino acids extremely sensitive to oxidation and heat, tyrosine as well as threonine changed minimally. The same was experienced for valine, isoleucine, leucine and phenylalanine content and no change was experienced for the non-essential amino acids, either, during the heat treatment. The two applied heat treatments caused practically no change in the amino acid composition of the milk protein neither in case of the essential nor in the case of the non-essential amino acids. Total free amino acid content of the raw milk was measured to be 20.67 mg/100 g milk, which reduced in the milk pasteurized in the traditional way to 8.02 mg amino acid/100 g milk, whereas in the microwave pasteurized milk to 8.96 mg amino acid/100 g milk. With the exception of arginine, the amount of each essential free amino acid decreased substantially during the heat treatment. The most striking is this decrease for phenylalanine, leucine, lysine, valine and tyrosine. The decrease is presumably a result of the technological intervention. Thus, significant difference was obtained between the raw milk and the milk samples heat treated in different ways regarding the free amino acids; no distinction could be drawn between the two heat treatment methods in the respect of free amino acids, however, consequently, the two heat treatment methods can be considered as being of same value also in this respect.
References
Barótfi I. (2001). Szolgáltatástechnika. A mikrohullámú sütők. Mezőgazda Kiadó, Budapest. 786.
Cheng, W. M., Raghavan, G. S. V., Ngadi, M., Wang, N. (2006). Microwave power control strategies on the drying process I. Development and evaluation of new microwave drying system. Journal of Food Engineering, 76(2), 188–194. https://doi.org/10.1016/j.jfoodeng.2005.05.006
Decreau, R. (1985). Microwaves in the Food Processing Industry. Academic Press, New York.
DeLorenzo, R. (1994). Heating Food and Eliminating Air Pollution with Microwaves Dewey 'Understanding Chemistry, An Introduction', West Publishing Company, 220.
Ku, H. S., Siores, E., Taube, A., Ball, J. A. R. (2002). Productivity improvement through the use of industrial microwave technologies. Computers & Industrial Engineering. 42(2–4), 281–290. https://doi.org/10.1016/S0360-8352(02)00026-8
László Zs., Simon E., Hodúr C., Fenyvessy J. (2005). Mikrohullámú technika alkalmazásának újabb lehetőségei az élelmiszer- és környezetiparban. Szeged. Agrártudományi Közlemények, 18. 29–34. https://doi.org/10.34101/actaagrar/18/3242
Lau, M. H., Tang, J. (2002). Pasteurization of pickled asparagus using 915 MHz microwaves. Journal of Food Engineering, 51(4), 283–290. https://doi.org/10.1016/S0260-8774(01)00069-3
McMinn, W. A. M. (2006). Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. Journal of Food Engineering, 72(2), 113–123. https://doi.org/10.1016/j.jfoodeng.2004.11.025
Morup K., Olesen E. S. (1976). New method for prediction of protein value from essential amino acid pattern. Nutrition Reports International, 13. 355–365.
Özilgen, S., Özilgen, M. (1991). Food Engineering Department, Middle East Technical University, Ankara, Turkey Enzyme and Microbial Technology, 13(5), 419–423.
Pozar, D. M. (1993). Microwave Engineering. Addison-Wesley Publishing Company.
Rajkó R., Szabó G., Kovács E., Papp G-né, Hotya L-né (1996): Szójabab tripszininhibitor-aktivitásának csökkentése mikrohullámú kezeléssel. Élelmiszeripari Főiskola, Tudományos Közlemények, 18. 45–57.
Romano, V. R., Marra, F., Tammaro, U. (2005). Modelling of microwave heating of foodstuff: study on the influence of sample dimensions with a FEM approach. Journal of Food Engineering, 71(3), 233–241. https://doi.org/10.1016/j.jfoodeng.2004.11.036
Rosenberg, U., Bogl, W. (1987). Microwave pasteurization, sterilization, blanching, and pest control in the food industry. Food Technol., 41. 92–99.
Szabó G. (1991). A mikrohullámú technika alkalmazása az élelmiszeripari és biotechnológiai gyakorlatban. Szeszipar, 4. 124–127.
Sieber, R., Eberhard, P., Gallmann, P.U. (1999). Heat treatment of milk in domestic microwave ovens. International Dairy Journal, 6(3), 231–246. https://doi.org/10.1016/0958-6946(95)00009-7
Sun, T., Tang, J., Powers, J. R. (2006). Antioxidant activity and quality of asparagus affected by microwave-circulated water combination and conventional sterilization. Food Chemistry, 100(2), 813–819. https://doi.org/10.1016/j.foodchem.2005.10.047
Valero, E. (2000). Chemical and sensorial changes in milk pasteurized by microwave and conventional systems during cold storage. Food Chemistry, 70(1), 77–81. https://doi.org/10.1016/S0308-8146(00)00074-1
Wang, Y., Wig, T. D., Tang, J., Hallberg, L. M. (2003). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57(3), 257–268. https://doi.org/10.1016/S0260-8774(02)00306-0
Downloads
Published
Issue
Section
License
Copyright (c) 2008 Albert Csilla, Lányi Szabolcs, Salamon Szidónia, Lóki Katalin, Csapóné Kiss Zsuzsanna, Csapó János

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

