Influence of genotype, sex and age of chickens on metabolisable energy of poultry feeds
Keywords:
metabolisable energy, sex, age, genotypes, feed ingredientsAbstract
The influence of genotype, age and sex on apparent metabolisable energy (AME) and on nitrogen-corrected AME (AMEn) was studied using male and female chickens of two different genotypes (RIR and Cornish lines) at 4 and 8 weeks of age. The experiment was carried out for the purposes of better understanding the effect of age on dietary AME and AMEn of high protein-low energy (LEHP) and low protein-high energy (HELP) diets. These types of diets are used in the determination of the AMEn content of feed ingredients. The influence of age on metabolisable energy values obtained for the feed ingredients was not consistent; thus, AME and AMEn values obtained for corn were not significantly different (P > 0.05) at 4 and 8 weeks of age, but with respect to fish meal significant difference (P > 0.05) was ascertained between the ages in both genotypes. Hie AME and AMEn values calculated for corn at both ages were the same for both genotypes and both sexes. Also, the level of corn intake had no influence on metabolisable energy at these two ages. However, variation in fish meal intake and its metabolisable energy content was dependent on the growing period. AME and AMEn values obtained for the LEHP diet, but not for the HELP diet, increased significantly between 4 and 8 weeks of age, representing a significant interaction between age and experimental diet. The AME and AMEn were significantly lower at four weeks than at eight weeks of age for LEHP, in contrast with the HELP diet.
References
Adnan, M. A. (1981). Influence of age and sex of growing broiler chicks and body weight of roosters on their endogenous and metabolic energy losses. Poultry Sci., 60(4), 781–785. https://doi.org/10.3382/ps.0600781
Askbrant, S. (1990). A study on effects of bird age, protein retained, level of feed intake and endogenous excretions on dietary energy metabolised. Uni. of Agri. Sci., 65. 2281–2291.
Aviniki, O., Vincze L. (1989). Raw vs. steam-flaked soyabeans in diets for young chickens. Arch. Anim. Nutr., 39(1–2), 105–109. https://doi.org/10.1080/17450398909432953
Bartov, I. (1995). Differential effect of age on metabolisable energy content of high protein-low energy and low protein – high energy diets in young broiler chicks. 36(4), 631–643. https://doi.org/10.1080/00071669508417808
Bayley, H. S. (1968). Effect of heat-treatment on the metabolisable energy value of wheat germ meal and other wheat milling by-products. Cereal Chem., 45. 557–563.
Boldaji, F. (1981). True metabolisable energy value of corn and different varieties of wheat and barley using normal and dwarf Single Comb White Leghorn roosters. Poultry Sci., 60(1), 225–227. https://doi.org/10.3382/ps.0600225
Carew, L. B. (1972). Fat absorption by the very young chick. Poultry Sci., 51(3), 738–742. https://doi.org/10.3382/ps.0510738
Chwalibog, A., Heckel, S., Thorbek, G. (1978). Protein and energy metabolism in growing broiler in relation to sex and feeding level. Zeitschrift für Tierphy. Tier. und Futter., 41(1–6), 87–99. https://doi.org/10.1111/j.1439-0396.1978.tb00569.x
Dublecz, K., Vincze, L., Szűts, G., Wagner, L., Jakab, E., Pál, L. (1997). Módszertani összehasonlító vizsgálat baromfi keveréktakarmányok metabolizálható energiatartalmának meghatározására. Állattenyésztés és Takarmányozás, 46. 145–154.
Fernandez, F. I. (1996). The use of the excretion of nitrogen compounds as an indirect index of the adequacy of dietary protein in chickens. Anim. Sci., 63(2), 307–314. https://doi.org/10.1017/S1357729800014867
Hill, F. W., Anderson, D. L. (1958). Comparison of metabolisable energy and productive energy determinations with growing chicks. J. Nutr., 64(4), 587–603. https://doi.org/10.1093/jn/64.4.587
Hochstetler, H. W., Scott, M. L. (1975). Metabolisable energy determinations with adult chickens. Cornell Nutr. Conf., 81–86.
Jorgensen, H., Sorensen, P. (1990). Protein and energy metabolism in broiler chickens selected for either body weight gain or feed efficiency. British Poultry Sci., 31(3), 517–524. https://doi.org/10.1080/00071669008417283
Laurin, D. E., (1985). Methods of measuring energy utilisation in broiler: Effect of genotype and presence of supplemental dietary fat. Poltry Sci., 64(5), 969–978. https://doi.org/10.3382/ps.0640969
Leenstra, F. R., Pit, R. (1987). Fat deposition in a broiler sire strain. 2. Comparisons among lines selected for less abdominal fat, lower feed conversion ratio and higher body weight after restricted and ad libitum feeding. Poultry Sci., 66(2), 193–202. https://doi.org/10.3382/ps.0660193
Leeson, S. K., Boorman, N., Lewis, D., Shrimpton, D. H. (1974). Metabolisable energy studies with turkeys: metabolisable energy of dietary ingredients. Brit. Poultry Sci., 15(2), 183–189. https://doi.org/10.1080/00071667408416094
Lodhi, G. N., Renner, R., Clandinin (1969). Studies on the metabolisable energy of rapeseed meal for growing chicks and laying hens. Poultry Sci., 48(3), 964–970. https://doi.org/10.3382/ps.0480964
March, B. E., Biely, J. (1971). Factors affecting the response of chicks to diets of different protein value: breed and age. Poultry Sci., 50(4), 1036–1040. https://doi.org/10.3382/ps.0501036
March, B. E. (1973). Variation in estimates of the metabolisable energy value of rapeseed meal determined with chickens of different ages. Poultry Sci., 52(2), 614–618. https://doi.org/10.3382/ps.0520614
Miski, A. M. A., Quazi, S. (1981). Influence ages and sex of growing broiler chicks and body weight of roosters on their endogenous and metabolic energy losses. Poultry Sci., 60(4), 781–785. https://doi.org/10.3382/ps.0600781
Mollah, Y., Bryden, W. R. (1983). Studies on low metabolisable energy wheat for poultry using conventional and rapid assay procedures and the effects of processing. British Poultry Sci., 24(1), 81–89. https://doi.org/10.1080/00071668308416716
Olsson, N., Kihlen, G. (1948). Edin’s indicator method in digestibility experiments on poultry. VIIIth World Poultry Cong., 225–232.
Polin, D., Hussein, T. H. (1982). The effect of bile acid on lipid and nitrogen retention, carcass composition, and dietary metabolisable energy in very young chicks. Poultry Sci., 61(8), 1697–1707. https://doi.org/10.3382/ps.0611697
Potter, L. M., Pudelkiewicz, W. J., Webster, L. D. (1962). Metabolisable energy and digestibility evaluation of fish meal for chickens. Poultry Sci., 41(6), 1745–1752. https://doi.org/10.3382/ps.0411745
Proudman, J. A., Mallen, W. J., Anderson, D. L. (1970). Utilisation of feed in fast- and slow-growing lines of chickens. Poultry Sci., 49(4), 961–972. https://doi.org/10.3382/ps.0490961
Scheele, C. W. (1979). 2nd European symposium on poultry nutrition. Netherlands.
Shires, A. (1987). Rate of passage of corn-canola meal and corn-soybean meal diets though the gastrointestinal tract of broiler and White Leghorn chickens. Poultry Sci., 66(1), 289–298. https://doi.org/10.3382/ps.0660289
Shires, A., Robblee, A. R., Hardin, R. T., Clandinin, D. R. (1980). Effect of the age of chickens on the true metabolisable energy values of feed ingredients. Poultry Sci., 59(2), 396–403. https://doi.org/10.3382/ps.0590396
Sibbald, I. R., Slinger, S. J., Summer, J. D. (1960). Factor affecting the metabolisable energy content of poultry feeds. Poultry Sci., 39(3), 544–556. https://doi.org/10.3382/ps.0390544
Sibbald, I. R., Slinger, S. J. (1962). Factors affecting the metabolisable content of poultry feed. 10. A study of the effect of level of dietary inclusion on the metabolisable energy value of several hight protein feedingstuffs. Poultry Sci., 41(4), 1282–1289. https://doi.org/10.3382/ps.0411282
Sibbald, I. R., Slinger, S. J. (1963a). The effects of breed, sex, and arsenical and nutrient density on the utilisation of dietary energy. Poultry Sci., 42(6), 1325–1332. https://doi.org/10.3382/ps.0421325
Sibbald, I. R., Slinger, S. J. (1963b). A biological assay for metabolisable energy in poultry feeds ingredients together with findings that demonstrate some of the problems associated with the evulation of fats. Poultry Sci., 42(2), 313–325. https://doi.org/10.3382/ps.0420313
Sibbald, I. R. (1975). The true metabolisable energy value of several feedingstuffs measured with rooster, laying hens, turkeys and broiler hens. Poultry Sci., 55(4), 1459–1463. https://doi.org/10.3382/ps.0551459
Sibbald, I. R., Price, K. (1975). Variation in the metabolisable energy values of diets and dietary components fed to adult roosters. Poultry Sci., 54(2), 448–456. https://doi.org/10.3382/ps.0540448
Sibbald, I. R. (1976). A bioassay for true metabolisable energy in feedstuffs. Poultry Sci., 54(1), 1990–1997. https://doi.org/10.3382/ps.0550303
Sibbald, I. R. (1978). The effect of the age of the assay bird on the true metabolisable energy values of feeddingstuffs. Poultry Sci., 57(4), 1008–1012. https://doi.org/10.3382/ps.0571008
Slinger, S. J. (1964). The relative abilities of two breeds of chickens and two varieties of turkeys to metabolise dietary energy and dietary nitrogen. Poultry Sci., 43(2), 329–333. https://doi.org/10.3382/ps.0430329
Sorensen, P. A., Chwalibog, A. (1983). Protein and energy metabolism in two lines of chickens selected for growth on high or low protein diets. British Poultry Sci., 24(2), 237–250. https://doi.org/10.1080/00071668308416735
Spratt, R. S., Leeson, S. (1987). Determination of metabolisable energy of various diet using leghorn, dwarf, and regular broiler breeder hen. Poultry Sci., 66(2), 314–317. https://doi.org/10.3382/ps.0660314
Summers, J. D., Slinger, S. J., Sibbald, I. R. (1964). Influence of protein and energy on growth and protein utilisation in the growing chicken. J. Nutr., 82(4), 463–468. https://doi.org/10.1093/jn/82.4.463
Ten Doeschate, R. A. H. M., Scheele, C. W., Schreurs, V. V. A. M., Van Der Klis, J. D. (1993). Digestibility studies in broiler chickens: Influence of genotype, age, sex and method of determination. British Poultry Sci., 34(1), 131–146. https://doi.org/10.1080/00071669308417569
Vincze, L. (1979). A brojlercsirke takarmányfehérjéjének értékét befolyásoló tényez k.
Agrártudományi Közlemények, 38. 393–398.
Vincze, L., Dublecz, K., Jakab, E., Szűts, G., Wágner, L. (1992). Composition of the metabolisable energy and digestibility of the nutrients in compound feeds and raw materials determined two and six week old growing chicks. World’s Poultry Congress, 3. 463–465.
Vincze, L., Szűts, G., Jakab, E., Wágner, L., Dublecz, K. (1997). A brojlerek vágási minőségét befolyásoló takarmányozási tényezők. II. Nemzetközi Baromfitenyésztési Szimpózium, 31–40.
Vincze, L. (szerk) (1999). A baromfitakarmányok energia és fehérjeértékelése. Kiad.: Keszthelyi Akadémiai Alapítvány. 183.
Washburn, K. W., Guill, R. A., Edwars, H. M. (1975). Influence of genetic differences in feed efficiency of young chickkens on derivation of metabolisable energy from the diet and nitrogen retention. J. Nutr., 105(6), 726–732. https://doi.org/10.1093/jn/105.6.726
Yutste, P., Longstaff, M. A., McNab, J. M. (1991). The digestibility of semi-purified starches from wheat, cassava, pea, bean and potato by adult cockerels and young chicks. Anim. Feed Sci. Technol., 35(3–4), 289–300. https://doi.org/10.1016/0377-8401(91)90135-F
Zelenka, J. (1997). Effects of sex, age and food intake upon metabolisable energy value in broiler chickens. British Poultry Sci., 38(3), 281–284. https://doi.org/10.1080/00071669708417987
Zelenka, J. (1968). Influence of the age of chicken on the metabolisable energy value of poultry diets. British Poultry Sci., 9(2), 135–142. https://doi.org/10.1080/00071666808415703
Downloads
Published
Issue
Section
License
Copyright (c) 2000 Akbar Yaghobfar, F. Boldaji, Csapó János

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

