The role of wetlands in the landscape and their utilisation in wastewater treatment

Authors

  • Nóra Németh Szent István University, Institute of Enviromental and Landscape Management, Department of Nature Protection. 2103 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.4583

Keywords:

wetland, wastewater treatment, sustainability, environmentally friendly, systems fitting in the landscape

Abstract

Due to their unique ecological role played in the environment, both natural and constructed wetlands are getting into the focus of attention and research projects.
During the past decades, several useful characteristics of wetlands have been recognised. They play an important role in water storage and in the regulation of erosion and runoffs, provide mining possibilities, biomass produced here can be used in different ways, at the same time they have outstanding function from the point of view of wild animals and plants, conservation of the gene pool and biodiversity, they take part in the material and energy cycle, and they have a role in education and training and recreation as well.
Wetlands are the most valuable areas of our environment, but at the same time they are also the most endangered ones. They reflect to the natural characteristics and conditions of the environment, therefore their conservation and protection have got outstanding importance from the ecological, social and environmental point of view. Among them, reed communities are able to transform and eliminate pollutants, adsorb, adsorb and accumulate elements and nutrients, thus they are often considered to be the „kidney of the country”. These features are applied in the treatment of polluted waters.
During the research period, author examined the wastewater, the soil and the plant (Phragmites australis (Cav.) Trin. ex Steudel) together in a root zone system used to treat municipal wastewater, which issue is not very well discussed in the former publications. Researchers examine these systems mainly from the point of view of water quality parameters, though, the role of the three factors mentioned above are strongly related to each other. The understanding of the role of the plant in element accumulation was emphasised, which enables us to understand the operation of the system and lay down the ecological bases of planning. A picture is given how plants live in an environment where the nutrient and element concentrations are higher than in their natural habitat.
Natural-like systems cannot be neglected from the environmental point of view, and a monitoring system is needed to help the operation of the system based on experience and observations.

References

Armstrong J., Armstrong W. 1988: Phragmites australis - a preliminary study of soil-oxidising sites and internal gas transport pathways. New Phytology 108: 373-382. https://doi.org/10.1111/j.1469-8137.1988.tb04177.x

Armstrong J., Armstrong W. 1990: Pathways and mechanisms of oxygen transport in Phragmites australis. In: Cooper, P.F., Findlater, B.C. (eds.), Constructed Wetlands in Water Pollution Control. Pergamon, Oxford, UK, pp. 529-534. https://doi.org/10.1016/B978-0-08-040784-5.50057-7

Brix H., Schierup H.H. 1986: Root-Zone Systems. Operational experience of 14 Danish systems in the initial phase. Report to the Danish Environmental Protection Board. p. 80.

Brix H. 1990: Gas exchange through the soil-atmosphere interface and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Research 24: 259-266. https://doi.org/10.1016/0043-1354(90)90112-J

Brix H. 1993: Macrophyte mediated oxygen transfer in wetlands: transport mechanism and rates. In: Moshiri G. A. (ed.): Constructed Wetlands for Water Quality Improvement. CRC Press, Boca Raton, Florida, pp. 391-398. https://doi.org/10.1201/9781003069997-48

Brix H., Schierup H. H. 1990: Soil oxygenation in constructed reed beds: The role of macrophyte and soil atmosphere interface oxygen transport. In: Cooper P. F., Findlater B. C. (eds.): Constructed Wetlands in Water Pollution Control. Pergamon, Oxford, UK, pp. 53-66. https://doi.org/10.1016/B978-0-08-040784-5.50010-3

Brix H. 1994: Use of constructed wetlands in water pollution control: Historical development, present status, and future perspectives. Water Science and Technology, 30: 325-333. https://doi.org/10.2166/wst.1994.0413

Brix H. 1997: Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35:11-17. https://doi.org/10.2166/wst.1997.0154

Bucksteeg K. 1990: Treatment of domestic sewage in emergent helophyte beds. German experiences and ATV Guidelines H 262. In: Proceedings of the International Conference on the Use of Constructed Wetlands in Water Pollution Control. Cambridge. UK. pp. 505-515. https://doi.org/10.1016/B978-0-08-040784-5.50053-X

Buzás I. (szerk.) 1988: Talaj- és agrokémiai vizsgálati módszerkönyv2. a talaj fizikai-kémiai és kémiai vizsgálati módszerei. Mezőgazdasági Kiadó, Budapest.

Conley L. M., Dick R. I., Lion L. W. 1991: An assessment of the root zone method of wastewater treatment. JWPCF, 63: 239-247.

Cooper P. F. (ed.) 1990: European design and operation guidelines for reed bed treatment systems. WRC Report, UI 17, Swindon, UK.

Cooper P.F., Hobson J. A. 1988: Sewage treatment by reed bed systems: The present situation in the United Kingdom. In: Hammer D. A. (ed.): Constructed Wetlands for Wastewater Treatment. Lewis Publisher, pp. 153-171. https://doi.org/10.1201/9781003069850-13

Cooper P. F. 1999: A review of the design and performance of vertical flow and hybrid reed bed treatment systems. Water Science and Technology, 40: 1-17. https://doi.org/10.2166/wst.1999.0125

DeBusk T. A., Langston, M. A., Burgoon, P. S., Reddy, K. R. 1990: A performance comparison of vegetated submerged beds and floating macrophytes for domestic wastewater treatment. In: Cooper P. F., Findlater B. C. (eds.): Constructed Wetlands in Water Pollution Control. Pergamon, Oxford, UK, pp. 301-308. https://doi.org/10.1016/B978-0-08-040784-5.50033-4

Findlater B. C., Hobson J. A., Cooper P. F. 1990: Reedbed treatment systems - performance evaluation. In:. Cooper P. F. And Findlater, B.C. (eds.): Constructed Wetlands in Water Pollution Control (Adv. Wat. Pollut. Control no. 11). Pergamon Press, London, pp. 193-204. https://doi.org/10.1016/B978-0-08-040784-5.50023-1

Gopal B. 1999: Natural and constructed wetlands for wastewater treatment: potentials and problems. Water Science and Technology 40: 3 27-35. https://doi.org/10.2166/wst.1999.0130

Haberl R., Perfler R. 1990: Seven years of research work and experience with wastewater treatment by a reed bed system. In: Cooper, P. F., Findlater, B. C. (eds.): Constructed Wetlands in Water Pollution Control. Pergamon, Oxford, UK, pp. 205-214. https://doi.org/10.1016/B978-0-08-040784-5.50024-3

Haldemann C., Brändle R. 1983: Avoidance of oxygen deficit stress and release of oxygen by stalked rhizomes of Schoenoplectus lacustris. Physiol. Veg. 21: 109-113.

Jespersen D. N., Sorell B. K:, Brix H. 1998: Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany 61: 165-180. https://doi.org/10.1016/S0304-3770(98)00071-0

Kadlec R. H. 1994: Overview: surface flow constructed wetlands. In: Proceedings of the 4th International Conference on Wetland Systems for Water Pollution Control. ICWS Secretariat, Guangzhou, P. R. China. pp. 1-12.

Kickuth R. 1977: Degradation and incorporation of nutrients from rural wastewater by plant rhizosphere under limnic conditions. In: Utilisation of Manure by Land Spreading. Comm. Europ. Commun., EUR 5672e, London.

Kovács M., Précsényi I., Podani J. 1978: Anhäufung von Elementen im Balatoner Schilfrohr (Phragmites communis). Acta Bot. Acad. Sci. Hung. 14: 99-111.

Kovács M., Turcsányi G., Kaszab L., Penksza K., Ötvös E. 1993: Distribution of chemical elements in the reed- and cattail beds of lake Balaton. Bull. of Univ. of Agric. Sci. Gödöllö, pp. 21-28.

Kovács M., Penksza K., Turcsányi G. 1994a: Bioindication of heavy metal loading in areas with heavy industry. Proceed. Internat. Symp. on Envir. Contam. in Central and Eastern Europe, Budapest, pp. 477-479.

Kovács M., Penksza K., Turcsányi G., Kaszab L., Ötvös E. 1994b: Element concentration cadastres of halophytic plant communities in Hungary. Acta Bot. Sci. Hung. 38: 455-468.

KTM, 1996: Környezetkímélő és természetközeli szennyvíztisztítási eljárások alkalmazásának, elterjesztésének lehetőségei Magyarországon. Budapest.

Mitsch W. J., Gosselink J. G. 1993: Wetlands. Second Edition. Van Nostrand Reinhold, New York.

Mitsch W. J., Mitsch R. H., Turner R. E. 1994: Wetlands of the Old and New Worlds: ecology and management. In: Global Wetlands: Old World and New. pp. 3-56.

Podani J., Kovács M., Dinka M. 1979: An analysis of elemental concentrations in reed (Phragmites communis Trin.) from Lake Balaton. I. Comparison of organs of reed correlations between elements. Bot. Közlem. 66. pp. 275-284.

Reed S. C., Brown D. 1995: Subsurface flow wetlands - A performance evaluation. Water Environ. Res., 67: 244-248. https://doi.org/10.2175/106143095X131420

Reed S. C., Crites R. W., Middlebrooks E. J., 1995: Natural Systems for Waste Management and Treatment. McGraw-Hill Inc., New York.

Reddy K. R., Debusk W. F. 1987: Nutrient storage capabilities of aquatic and wetland plants. In: Reddy K. R., Smith W. H. (eds.): Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, Florida, pp. 337-357.

Schierup H. H., Larsen V. J. 1981: Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and a non-polluted lake. I. Availability, uptake and translocation of heavy metals in Phragmites australis (Cav.) Trin. Aquatic Botany 11: 197-210. https://doi.org/10.1016/0304-3770(81)90061-9

Steinberg S. L., Coonrod H. S. 1994: Oxidation of the root zone by aquatic plants growing in gravel-nutrient solution. Journal of Environmental Quality 23: 907-913. https://doi.org/10.2134/jeq1994.00472425002300050009x

Szilágyi F. 1995: A természetes szennyvíztisztítás alkalmazhatósága - BME VICSA témabeszámoló. Kézirat. Budapest.

Szilágyi F. 1997: A szügyi gyökérmezős szennyvíztisztító telep üzemelési tapasztalatai. Témabeszámoló kézirata. Ökotech Kft., Budapest.

Zirschky J., Reed, S. C., Crites R., Middlebrooks J., Smith R.G., Otis R., Knight R., Kreissl J., Tchobanoglous G., Bastian R., Poloncsik S. 1990: Lagoons, leach fields and other assistants of nature. Water Env. Technol., pp. 37-41.

Watson J. T., Reed S. C., Kadlec R. H., Knight R. L., Whitehouse A. E. 1989: Performance expectations and loading rates for constructed wetlands. In: Hammer D. A. (ed.): Constructed Wetlands for Wastewater Treatment. Municipal, Industrial and Agricultural. Lewis Publisher, Chelsea, Michigan, pp. 319-358. https://doi.org/10.1201/9781003069850-31

MSZ 21470-1 Környezetvédelmi talajvizsgálatok. Mintavétel.

MSZ ISO 5667-10:1995 Vízminőség. Mintavétel. 10. rész: A szennyvízből végzett mintavétel előírásai)

MSZ 21470-50:1998 Környezetvédelmi talajvizsgálatok. Az összes és az oldható toxikuselem-, nehézfém- és a króm(VI)tartalom meghatározása

MSZ 1484-3:1998 Vízvizsgálat. Az oldott, a lebegőanyaghoz kötött és az összes fémtartalom meghatározása AAS- és ICP-OES-módszerrel

A 3/1984. (II.7.) OVH rendelkezés a szennyvízbírságról

A 204/2001. (X.26.) Korm. rendelet a csatornabírságról

Published

2004-07-27

Issue

Section

Eredeti cikkek

How to Cite

The role of wetlands in the landscape and their utilisation in wastewater treatment. (2004). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 2(1), 49-63. https://doi.org/10.56617/tl.4583

Similar Articles

11-20 of 28

You may also start an advanced similarity search for this article.