The role of smoke derived from burning vegetation in the regeneration of plants
DOI:
https://doi.org/10.56617/tl.3787Keywords:
fire, germination, karrikinolide, review, seedling vigour, smoke-waterAbstract
Recurrent fires, natural or anthropogenic, occur in a number of ecosystems, particularly in savannas, Mediterranean shrublands, temperate grasslands and boreal forests. In Hungary, fires might have played an important role in maintaining the openness of the forest steppe on the Hungarian Great Plain during the early Holocene. Recently, fires pose a threat to certain habitats, such as Austrian pine plantations and juniper-poplar steppe woodlands. Furthermore, under a warmer, dryer and more variable climate projected for the near future, fire risk in general is expected to increase.
During the last two decades, numerous, mostly foreign studies reported that smoke derived from burning vegetation and its aqueous solution (smoke-water) had beneficial effects on the regeneration of a range of species. Here we review the main results of these studies on the prevalence, physiological mechanism, ecological significance and potential for practical use of this phenomenon, and highlight the importance of such investigations in Hungary.
To date, smoke or smoke-water has been shown to stimulate seed germination for more than 1200 species from phylogenetically distant plant families and different continents. The phenomenon is particularly frequent in Mediterranean shrublands, for both dicotyledons and monocotyledons, annuals and perennials, but it has also been recorded for species from non-fire prone semi-deserts, numerous arable weeds and cultivated plants. Based on literature data, enhanced germination in response to the active compounds of smoke has been detected for about half (33) of 65 natural species in the Hungarian flora and for 8 cultivated plants, while negative effects were found for 7 species (10%) only. In addition, smoke can improve seedling growth and vigour, and promote flowering and fruiting. The most probable mechanism of smoke action is that it performs similar functions than endogenous plant growth regulators do or interacts with these hormones, and/or induces stress-like responses similar to that of certain environmental stresses (e.g. drought or temperature extremes). The germination stimulating capacity is mainly attributed to karrikinolide (3-methyl-2H-furo[2,3-c]pyran-2-one, KAR1), a butenolide-type compound identified in smoke. The aqueous solution of KAR1 is effective over a wide range of concentrations (from 10-4 to 10-9 M) for many species.
Further studies are needed to assess the significance of the promotive effects of smoke in the composition and structure of plant communities (e.g. diversity, invasive species, fungal colonization of roots) during postfire succession. The beneficial effects of smoke and smoke-water enable the application of smoke-technology in conservation (e.g. habitat restoration, ex-situ conservation of threatened species) and cultivation of several crops and vegetables with lower costs and smaller impacts on the environment.
References
Adkins S.W., Peters N.C.B. 2001: Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Sci. Res. 11: 213−222.
Baldwin I.T., Staszak-Kozinski L., Davidson R. 1994: Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata Torr. ex. Watson. J. Chem. Ecol. 20: 2345−2371. https://doi.org/10.1007/BF02033207
Bartholy J., Pongrácz R., Torma Cs. 2010: A Kárpát-medencében 2021−2050-re várható regionális éghajlatváltozás RegCM-szimulációk alapján. "KLÍMA-21" füzetek: klímaváltozás-hatások-válaszok 60: 3−13.
Baskin C.C., Baskin J.M. 1998: Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, California, pp. 114−119., pp. 133−137., p. 260., pp.292−293., pp. 339−347., pp. 398−399., pp. 412−413.
Baxter B.J.M., Van Staden J., Granger J.E., Brown N.A.C. 1994: Plant-derived smoke and smoke extracts stimulate seed germination of the fire-climax grass Themeda triandra. Envir. Exp. Bot. 34: 217−223. https://doi.org/10.1016/0098-8472(94)90042-6
Bond W.J., Woodward F.I., Midgley G.F. 2005: The global distribution of ecosystems in a world without fire. New Phytol. 165: 525−538. https://doi.org/10.1111/j.1469-8137.2004.01252.x
Borhidi A., Sánta A. 1999: Vörös Könyv Magyarország növénytársulásairól 2. TermészetBÚVÁR Alapítvány Kiadó, Budapest, pp. 24−66., pp. 233−244., pp. 273−276.
Bózsing E., Csontos P., Cseresnyés I. 2006: Hőkezelés hatása a nyúlszapuka (Anthyllis vulneraria L.) magvainak csírázóképességére. Acta Agron. Óvár. 48: 19−30.
Brown N.A.C., Jamieson H., Botha P.A. 1994: Stimulation of germination in South African species of Restionaceae by plant-derived smoke. Plant Growth Regul. 15: 93−100. https://doi.org/10.1007/BF00024681
Brown N.A.C., Van Staden J. 1997: Smoke as a germination cue. A review. Plant Growth Regul. 22: 115−124. https://doi.org/10.1023/A:1005852018644
Brown N.A.C., Van Staden J., Johnson T., Daws M.I. 2003: A summary of patterns in the seed germination response to smoke in plants from the Cape Floral Region In: Smith R.D., Dickie J.B., Linnington S.H., Pritchard H.W., Probert R.J. (eds.) Seed conservation: Turning science into practice. Royal Botanic Gardens, Kew, pp. 563−574.
Cahoon D.R., Stocks B.J., Levine J.S., Cofer Iii W.R., O'neill K.P. 1992: Seasonal distribution of African savanna fires. Nature 359: 812−815. https://doi.org/10.1038/359812a0
Calder W.J., Lifferth G., Moritz M.A., St. Clair S.B. 2010: Physiological effects of smoke exposure on deciduous and conifer tree species. Int. J. Forest. Res. 2010, article ID 438930, 7 pages, https://doi.org/10.1155/2010/438930
Chhetry G.K.N., Belbahri L. 2009: Indigenous pest and disease management practices in traditional farming systems in north east India. A review. J. Plant Breed. Crop Sci. 1: 28−38.
Clarke S., French K. 2005: Germination response to heat and smoke of 22 Poaceae species from grassy woodlands. Aust. J. Bot. 53: 445−454. https://doi.org/10.1071/BT04017
Coates T.D. 2003: The effect of concentrated smoke products on the restoration of highly disturbed mineral sands in southeast Victoria. Ecol. Manag. Restor. 4: 133−139. https://doi.org/10.1046/j.1442-8903.2003.00148.x
Cochrane A., Kelly A., Brown K., Cunneen S. 2002: Relationships between seed germination requirements and ecophysiological characteristics aid the recovery of threatened native plant species in Western Australia. Ecol. Manag. Restor. 3: 47−60. https://doi.org/10.1046/j.1442-8903.2002.00089.x
Commander L.E., Merritt D.J., Rokich D.P., Flematti G.R., Dixon K.W. 2008: Seed germination of Solanum spp. (Solanaceae) for use in rehabilitation and commercial industries. Aust. J. Bot. 56: 333−341. https://doi.org/10.1071/BT07209
Crosti R., Ladd P.G., Dixon K.W., Piotto B. 2006: Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin. Forest Ecol. Manag. 221: 306−312. https://doi.org/10.1016/j.foreco.2005.10.005
Cseresnyés I., Csontos P. 2004: Feketefenyvesek tűzveszélyességi viszonyainak elemzése McArthur modelljével. Tájökol. Lapok 2: 231−252.
Csontos P., Tamás J., Kalapos T. 1998: A magbank szerepe a dolomitnövényzet regenerálódásában korábban feketefenyvessel borított területeken. In: Csontos P. (szerk.) Sziklagyepek szünbotanikai kutatása. Scientia Kiadó, Budapest, pp. 183−196.
D'antonio C.M., Vitousek P.M. 1992: Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23: 63−87. https://doi.org/10.1146/annurev.es.23.110192.000431
Daws M.I., Davies J., Pritchard H.W., Brown N.A.C., Van Staden J. 2007: Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regul. 51: 73−82. https://doi.org/10.1007/s10725-006-9149-8
Daws M.I., Pritchard H.W., Van Staden J. 2008: Butenolide from plant-derived smoke functions as a strigolactone analogue: Evidence from parasitic weed seed germination. S. Afr. J. Bot. 74: 116−120. https://doi.org/10.1016/j.sajb.2007.09.005
Dayamba S.D., Sawadogo L., Tigabu M., Savadogo P., Zida D., Tiveau D., Oden P.C. 2010: Effects of aqueous smoke solutions and heat on seed germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso. Flora 205: 319−325. https://doi.org/10.1016/j.flora.2009.12.017
De Lange J.H., Boucher C. 1990: Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S. Afr. J. Bot. 56: 700−703. https://doi.org/10.1016/S0254-6299(16)31009-2
Demir I., Light M.E., Van Staden J., Kenanoglu B.B., Celikkol T. 2009: Improving seedling growth of unaged and aged aubergine seeds with smoke-derived butenolide. Seed Sci. Technol. 37: 255−260. https://doi.org/10.15258/sst.2009.37.1.31
Demir I., Ozuaydin I., Yasar F., Van Staden J. 2012: Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S. Afr. J. Bot. 78: 83−87. https://doi.org/10.1016/j.sajb.2011.05.009
Dixon K.W., Roche S., Pate J.S. 1995: The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101: 185−192. https://doi.org/10.1007/BF00317282
Downes K.S., Lamont B.B., Light M.E., Van Staden J. 2010: The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2- one. Ann. Bot. 106: 381−384. https://doi.org/10.1093/aob/mcq118
Drewes F.E., Smith M.T., Van Staden J. 1995: The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 16: 205−209. https://doi.org/10.1007/BF00029542
Duchesne L.C., Hawkes B.C. 2000: Fire in northern ecosystems. In: Brown J.K., Smith J.K. (eds.) Wildland fire in ecosystems: effects of fire on flora. General Technical Report RMRS-GTR-42-vol. 2. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 35−52.
Figueroa J.A., Cavieres L.A. 2012: The effect of heat and smoke on the emergence of exotic and native seedlings in a Mediterranean fire-free matorral of central Chile. Rev. Chil. Hist. Nat. 85: 101−111. https://doi.org/10.4067/S0716-078X2012000100008
Figueroa J.A., Cavieres L.A., Gómez-González S., Montenegro M.M., Jaksic F.M. 2009: Do heat and smoke increase emergence of exotic and native plants in the matorral of central Chile? Acta Oecol. 35: 335−340. https://doi.org/10.1016/j.actao.2008.12.004
Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D. 2004: A compound from smoke that promotes seed germination. Science 305: 977. https://doi.org/10.1126/science.1099944
Flematti G.R., Ghisalberti E.L., Dixon K.W., Trengove R.D. 2009: Identification of alkyl substituted 2H furo[2,3-c]pyran-2-ones as germination stimulants present in smoke. J. Agric. Food Chem. 57: 9475−9480. https://doi.org/10.1021/jf9028128
Ghermandi L., Guthmann N., Bran D. 2004: Early post-fire succession in northwestern Patagonia grasslands. J. Veg. Sci. 15: 67−76. https://doi.org/10.1111/j.1654-1103.2004.tb02238.x
Gómez-González S., Sierra-Almeida A., Cavieres, L.A. 2008: Does plant-derived smoke affect seed germination in dominant woody species of the Mediterranean matorral of central Chile? Forest Ecol. Manag. 255: 1510−1515. https://doi.org/10.1016/j.foreco.2007.11.006
Imanishi H., Fortanier E.J. 1982: Effects of an exposure of bulbs to ethylene and smoke on flowering of Dutch iris. Bull. Univ. Osaka Pref., Ser. B. 34: 1−5.
IPCC 2012: Summary for policymakers. In: Field C.B., Barros V., Stocker T.F., Qin D., Dokken D.J., Ebi K.L., Mastrandrea M.D., Mach K.J., Plattner G.K., Allen S.K., Tignor M., Midgley P.M. (eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 1−19.
Jain N., Kulkarni M.G., Van Staden J. 2006: A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regul. 49: 263−267. https://doi.org/10.1007/s10725-006-9136-0
Jain N., Stirk W.A., Van Staden J. 2008: Cytokinin-and auxin-like activity of a butenolide isolated from plantderived smoke. S. Afr. J. Bot. 74: 327−331. https://doi.org/10.1016/j.sajb.2007.10.008
Jain N., Van Staden J. 2007: The potential of the smoke-derived compound 3-methyl-2H-furo[2,3-c]pyran-2 one as a priming agent for tomato seeds. Seed Sci. Res. 17: 175−181. https://doi.org/10.1017/S0960258507785896
Jefferson L.V., Pennacchio M., Havens K., Forsberg B., Sollenberger D., Ault J. 2008: Ex situ germination responses of Midwestern USA prairie species to plant derived smoke. Am. Midl. Nat. 159: 251−256. https://doi.org/10.1674/0003-0031(2008)159[251:ESGROM]2.0.CO;2
Keeley J.E. 1993: Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S. Afr. J. Bot. 59: 638. https://doi.org/10.1016/S0254-6299(16)30681-0
Keeley J.E., Bond W.J., Bradstock R.A., Pausas J.G., Rundel P.W. 2012: Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, 528 pp. https://doi.org/10.1017/CBO9781139033091
Keeley J.E., Fotheringham C.J. 1998: Smoke-induced seed germination in California chaparral. Ecology 79: 2320−2336. https://doi.org/10.1890/0012-9658(1998)079[2320:SISGIC]2.0.CO;2
Keeley S.C., Keeley J.E., Hutchinson S.M., Johnson A.W. 1981: Postfire succession of the herbaceous flora in southern California chaparral. Ecology 62: 1608−1621. https://doi.org/10.2307/1941516
Király G. 2009: Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 616 pp.
Kulkarni M.G., Ascough G.D., Van Staden J. 2007: Effects of foliar applications of smoke-water and a smokeisolated butenolide on seedling growth of okra and tomato. HortScience 42: 179−182. https://doi.org/10.21273/HORTSCI.42.1.179
Kulkarni M.G., Ascough G.D., Van Staden J. 2008: Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. HortTechnology 18: 449−454. https://doi.org/10.21273/HORTTECH.18.3.449
Kulkarni M.G., Ghebrehiwot H.M., Kirkman K.P., Van Staden J. 2012: Response of grass seedlings to smokewater and smoke-derived butenolide in the absence of macronutrients (nitrogen, phosphorus, and potassium). Rangeland Ecol. Manage. 65: 31−38. https://doi.org/10.2111/REM-D-11-00062.1
Kulkarni M.G., Light M.E., Van Staden J. 2011: Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. S. Afr. J. Bot. 77: 972−979. https://doi.org/10.1016/j.sajb.2011.08.006
Light M.E., Burger B.V., Staerk D., Kohout L., Van Staden J. 2010: Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination. J. Nat. Prod. 73: 267−269. https://doi.org/10.1021/np900630w
Light M.E., Daws M.I., Van Staden J. 2009: Smoke-derived butenolide: towards understanding its biological effects. S. Afr. J. Bot. 75: 1−7. https://doi.org/10.1016/j.sajb.2008.10.004
Lloyd M.V., Dixon K.W., Sivasithamparam, K. 2000: Comparative effects of different smoke treatments on germination of Australian native plants. Austral Ecol. 25: 610−615. https://doi.org/10.1111/j.1442-9993.2000.tb00066.x
Long R.L., Stevens J.C., Griffiths E.M., Adamek M., Gorecki M.J., Powles S.B., Merritt D.J. 2011a: Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Ann. Bot. 108: 933−944. https://doi.org/10.1093/aob/mcr198
Long R.L., Stevens J.C., Griffiths E.M., Adamek M., Powles S.B., Merritt D.J. 2011b: Detecting karrikinolide responses in seeds of the Poaceae. Aust. J. Bot. 59: 609−619. https://doi.org/10.1071/BT11170
Magyari E.K., Chapman J.C., Passmore D.G., Allen J.R.M., Huntley J.P., Huntley B. 2010: Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37: 915−935. https://doi.org/10.1111/j.1365-2699.2009.02261.x
Mavi K., Light M.E., Demir I., Van Staden J., Yasar F. 2010: Positive effect of smoke-derived butenolide priming on melon seedling emergence and growth. New Zeal. J. Crop Hort. 38: 147−155. https://doi.org/10.1080/01140671.2010.482967
Måren I.E., Janovský Z., Spindelböck J.P., Daws M.I., Kaland P.E., Vandvik V. 2010: Prescribed burning of northern heathlands: Calluna vulgaris germination cues and seed-bank dynamics. Plant Ecol. 207: 245−256. https://doi.org/10.1007/s11258-009-9669-1
Merritt D.J., Kristiansen M., Flematti G.R., Turner S.R., Ghisalberti E.L., Trengove R.D., Dixon K.W. 2006: Effects of a butenolide present in smoke on light-mediated germination of Australian Asteraceae. Seed Sci. Res. 16: 29−35. https://doi.org/10.1079/SSR2005232
Moreira B., Tormo J., Estrelles E., Pausas J.G. 2010: Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann. Bot. 105: 627−635. https://doi.org/10.1093/aob/mcq017
Nautiyal C.S., Chauhan P.S., Nene Y.L. 2007: Medicinal smoke reduces airborne bacteria. J. Ethnopharmacol. 114: 446−451. https://doi.org/10.1016/j.jep.2007.08.038
Nelson D.C., Flematti G.R., Ghisalberti E.L., Dixon K.W., Smith S.M. 2012: Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annu. Rev. Plant Biol. 63: 107−130. https://doi.org/10.1146/annurev-arplant-042811-105545
Nelson D.C., Riseborough J-A., Flematti G.R., Stevens J., Ghisalberti E.L., Dixon K.W., Smith S.M. 2009: Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibber- ellic acid synthesis and light. Plant Physiol. 149: 863−873. https://doi.org/10.1104/pp.108.131516
O'connell J.F., Latz P.K., Barnett P. 1983: Traditional and modern plant use among the Alyawara of Central Australia. Econ. Bot. 37: 80−109. https://doi.org/10.1007/BF02859310
Ónodi G. 2011: Legeltetés és tűz, mint gyepdinamikai tényezők: kísérletes vizsgálatok nyílt évelő homokpusztagyepekben. Doktori (PhD) értekezés, ELTE Növényrendszertani és Ökológiai Tanszék, Budapest - MTA ÖBKI, Vácrátót, 131 pp.
Pausas J.G., Keeley J.E. 2009: A burning story: the role of fire in the history of life. BioScience 59: 593−601. https://doi.org/10.1525/bio.2009.59.7.10
Pechony O., Shindell D.T. 2010: Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 107: 19167−19170. https://doi.org/10.1073/pnas.1003669107
Penman T.D., Binns D.L., Allen R.M., Shiels R.J., Plummer S.H. 2008: Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues. Cunninghamia 10: 547−555.
Pérez-Fernández M.A., Rodríguez-Echeverría S. 2003: Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain. J. Chem. Ecol. 29: 237−251. https://doi.org/10.1023/A:1021997118146
Pierce S.M., Esler K., Cowling R.M. 1995: Smoke-induced germination of succulents (Mesembryanthemaceae) from fire-prone and fire-free habitats in South Africa. Oecologia 102: 520−522. https://doi.org/10.1007/BF00341366
Podani J. 2007: A szárazföldi növények evolúciója és rendszertana. Második, bővített kiadás. ELTE Eötvös Kiadó, Budapest, 300 pp.
Raizada P., Raghubanshi A.S. 2010: Seed germination behaviour of Lantana camara in response to smoke. Trop. Ecol. 51: 347−352.
Read T.R., Bellairs S.M., Mulligan D.R., Lamb D. 2000: Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecol. 25: 48−57. https://doi.org/10.1046/j.1442-9993.2000.01031.x
Reyes O., Casal M. 2006a: Can smoke affect the germination of Pinus sylvestris, P. nigra, P. uncinata and P. pinaster? Forest Ecol. Manag. 234S: S184. https://doi.org/10.1016/j.foreco.2006.08.303
Reyes O., Casal M. 2006b: Seed germination of Quercus robur, Q. pyrenaica and Q. ilex and the effects of smoke, heat, ash and charcoal. Ann. For. Sci. 63: 205−212. https://doi.org/10.1051/forest:2005112
Reyes O., Trabaud L. 2009: Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat. Plant Ecol. 202: 113−121. https://doi.org/10.1007/s11258-008-9532-9
Richards A.E., Cook G.D., Lynch B.T. 2011: Optimal fire regimes for soil carbon storage in tropical savannas of northern Australia. Ecosystems 14: 503−518. https://doi.org/10.1007/s10021-011-9428-8
Rivas M., Reyes O., Casal M. 2006: Do high temperatures and smoke modify the germination response of Gramineae species? Forest Ecol. Manag. 234S: S192. https://doi.org/10.1016/j.foreco.2006.08.311
Roche S., Koch J.M., Dixon K.W. 1997: Smoke enhanced seed germination for mine rehabilitation in the sou- thwest of Western Australia. Rest. Ecol. 5: 191−203. https://doi.org/10.1046/j.1526-100X.1997.09724.x
Rokich D.P., Dixon K.W., Sivasithamparam K., Meney K.A. 2002: Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Rest. Ecol. 10: 185−194. https://doi.org/10.1046/j.1526-100X.2002.02040.x
Ruthrof K.X., Calver M.C., Dell B., Hardy G.E.St.J. 2011: Look before planting: using smokewater as an inventory tool to predict the soil seed bank and inform ecological management and restoration. Ecol. Manage. Restor. 12: 154−157. https://doi.org/10.1111/j.1442-8903.2011.00586.x
Senaratna T., Dixon K., Bunn E., Touchell D. 1999: Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regul. 28: 95−99. https://doi.org/10.1023/A:1006213400737
Snyman H.A. 2003: Short-term response of rangeland following an unplanned fire in terms of soil characteristics in a semi-arid climate of South Africa. J. Arid Environ. 55: 160−180. https://doi.org/10.1016/S0140-1963(02)00252-5
Soós V., Balázs E. 2008: Füstből születő élet. A karrikinek különleges hatása. TermészetBÚVÁR 2008/5: 2−5.
Soós V., Sebestyén E., Juhász A., Light M.E., Kohout L., Szalai G., Tandori J., Van Staden J., Balázs E. 2010: Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR1. BMC Plant Biol. 10: 236−252. https://doi.org/10.1186/1471-2229-10-236
Soós V., Sebestyén E., Juhász A., Pintér J., Light M.E., Van Staden J., Balázs E. 2009: Stress-related genes define essential steps in the response of maize seedlings to smoke-water. Funct. Integr. Genomics 9: 231−242. https://doi.org/10.1007/s10142-008-0105-8
Sparg S.G., Kulkarni M.G., Light M.E., Van Staden J. 2005: Improving seedling vigour of indigenous medicinal plants with smoke. Bioresource Technol. 96: 1323−1330. https://doi.org/10.1016/j.biortech.2004.11.015
Stevens J.C., Merritt D.J., Flematti G.R., Ghisalberti E.L., Dixon K.W. 2007: Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 298: 113−124. https://doi.org/10.1007/s11104-007-9344-z
Tamás J. 2001: Tűz utáni szukcesszió vizsgálata feketefenyvesekben. Egyetemi doktori értekezés, ELTE, Budapest, 140 pp.
Tamás J., Csontos P. 2006: Dolomitterületek vizsgálata a Budai-hegységben - milyen a növényzet erdőtűz után tíz évvel? In: Kalapos T. (szerk.) Jelez a flóra és a vegetáció. A 80 éves Simon Tibort köszöntjük. Scientia Kiadó, Budapest, pp. 105−115.
Thomas P.B., Morris E.C., Auld T.D. 2003: Interactive effects of heat shock and smoke on germination of nine species forming soil seed banks within the Sydney region. Austral Ecol. 28: 674−683. https://doi.org/10.1046/j.1442-9993.2003.1330.doc.x
Van Staden J., Brown N.A.C., Jäger A.K., Johnson T.A. 2000: Smoke as a germination cue. Plant Spec. Biol. 15: 167−178. https://doi.org/10.1046/j.1442-1984.2000.00037.x
Varga Z. 2001: Félszáraz és szekunder gyepek ökológiai és cönológiai viszonyai az Aggteleki-karszton. In: Borhidi A., Botta-Dukát Z. (szerk.) Ökológia az ezredfordulón II. Esettanulmányok. MTA, Budapest, pp. 187−221.
Wade D.D., Brock B.L., Brose P.H., Grace J.B., Hoch G.A., Patterson III w.A. 2000: Fire in eastern ecosystems. In: Brown J.K., Smith J.K. (eds.) Wildland fire in ecosystems: effects of fire on flora. Gen- eral Technical Report RMRS-GTR-42-vol. 2. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp. 53−96.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Mojzes Andrea, Kalapos Tibor
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).