Affects of timber logging with forestry machines on soil compaction in Babat-valley, Hungary

Authors

  • Csilla Ficsor Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management 2100 Gödöllő, Páter K. u. 1.
  • Csaba Centeri Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management 2100 Gödöllő, Páter K. u. 1. https://orcid.org/0000-0001-6590-4850
  • Laura Kónya Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management 2100 Gödöllő, Páter K. u. 1.
  • Zsuzsanna Gönye Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management 2100 Gödöllő, Páter K. u. 1.
  • Ákos Malatinszky Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management, 2100 Gödöllő, Páter K. u. 1.
  • Zsolt Biró Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management, 2100 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.3577

Keywords:

skidding, logging, forestry, soil compaction, soil moisture, forestry machines

Abstract

Forest operations such as skidding/logging cause long-term effects on the environment of the area affected by timber harvesting. Soil compaction and vegetation disturbance – mainly the saplings and the herbaceous plants - are the major concerns during forestry. We examined the impact of a forestry machine on the soil compaction along a skid trail. Altogether 7 quadrats were investigated, each had 2x2 meter extension. The soil penetration resistance and soil moisture were surveyed in the wheel track and between the tracks of the machine, separately in 4 different depths (0–10, 10–20, 20–30, 30–40 cm). Within each quadrats 10 points (5-5 respectively) were randomly selected and measured with a cone penetrometer and throughout electron conductivity of the soil. In the wheel track the soil was strongly compacted (3.85–3.14 MPa) between 0–40 cm. In the opposition of this the biggest penetration resistance was only 1.9 MPa between the tracks of the machine which means a proper soil structure.

Author Biography

  • Csilla Ficsor, Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Nature Conservation and Landscape Management 2100 Gödöllő, Páter K. u. 1.

    corresponding author
    csilla.ficsor@gmail.com

References

Birkás M. (szerk.) 2007: Földművelés és földhasználat. Mezőgazda Kiadó, Budapest.

Birkás M. 2010: Talajművelők zsebkönyve. Mezőgazda Kiadó, Budapest, pp. 66–67.

Birkás, M., Dekemati, I., Kende, Z., Pósa, B. 2017: Review of soil tillage history and new challenges in Hungary. Hungarian Geographical Bulletin 66(1): 55–64. https://doi.org/10.15201/hungeobull.66.1.6

Birkás M., Albrecht, L., Holló, S., Nyárai, H. F., Szalai, T., Percze, A. 1996: A tömörödöttség kialakulása a talajban és hatása a kukorica termésére és gyomosodására. Környezet- és tájgazdálkodási füzetek. II/1. 6172.

Bolf, G. B., Szabó, J., Szabó, B., Czakó, B., Németh, A. 2014: Protection measures against gully erosion in the Gödöllő Hillside Landscape Protection District. Proceedings of the 21st International Poster Day, Transport of Water, Chemicals and Energy in the Soil-Plant-Atmosphere System, Bratislava, 13.11.2014, p. 24–37.

Búzás I. 1993: Talaj és agrokémiai vizsgálati módszerkönyv 1. INDA 4231 Kiadó. Budapest

Dekemati, I., Radics, Z., Kende, Z., Bogunovic, I., Birkás, M. 2017: Responses of maize (Zea mays L.) roots to soil condition in an extreme growing season, Columella 4(1): 27–34.

Dövényi Z. (szerk.) 2010: Magyarország kistájainak katasztere, Második, átdolgozott és bővített kiadás, Magyar Tudományos Akadémia, Földrajztudományi Kutató Intézet, Budapest

Fekete G., Király G., Molnár Zs. 2017: A Pannon vegetációrégió lehatárolása. Botanikai Közlemények 104(1): 85–108. https://doi.org/10.17716/BotKozlem.2017.104.1.85

Fisher, R. F., Binkley, D. 2000: Ecology and Management of Forest Soils. Wiley, New York.

Firbás, O. 1996: Erdőhasználattan I., Mezőgazdasági Szaktudás Kiadó, Budapest, 260 p., 109.p.

Godefroid, S., Koedam, N. 2004: Interspecific variation in soil compaction sensitivity among forest floor species. Biological Conservation, 119: 207–217. https://doi.org/10.1016/j.biocon.2003.11.009

Gómez, J.A. 2017: Sustainability using cover crops in Mediterranean tree crops, olives and vines – Challenges and current knowledge. Hungarian Geographical Bulletin 66(1): 13–28. https://doi.org/10.15201/hungeobull.66.1.2

Hakansson, L., Voorhees, W. B. 1997: Soil compaction. In: Methods for assessment of soil degradation. CRC Press. New York. 167–179. https://doi.org/10.1201/9781003068716-8

Hutchings, T. R., Moffat, A. J., French, C. J. 2002: Soil compaction under timber harvesting machinery: a preliminary report on the role of brash mats in its prevention. Soil Use and Management 18. 34–38.

https://doi.org/10.1111/j.1475-2743.2002.tb00047.x

Jamshidi, R., Jaeger, D., Raafatnia, N., Tabari, M. 2008: Influence of Two Ground-Based Skidding Systems on Soil Compaction Under Different Slope and Gradient Conditions. International Journal of Forest Engineering 19(1): 9–16. https://doi.org/10.1080/14942119.2008.10702554

Keresztes Gy. ex verb. 2016: Kíméletes és környezetkímélő erdészeti faanyagmozgatás. NAIK MGI Traktorkiállás, Gödöllő, 2016. nov. 9.

Kosztka, M. 2012: Erdészeti útépítés: Erdészeti utak tervezése. Egyetemi tankönyv. Országos Erdészeti Egyesület, Budapest. pp. 319

Kozlowski, T. T. 1999: Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research. 14: 596–619. https://doi.org/10.1080/02827589908540825

Langmaack, M., Schrader, S., Rapp-Bernhardt, U., Kotzke, K. 2002: Soil structure rehabilitation of arable soil degraded by compaction. Geoderma 105. 141–152. https://doi.org/10.1016/S0016-7061(01)00097-0

Lipiec, J., Hakansson, I. 2000: Influences of degree of compactness and matric water tension on some important plant growth factors. Soil and Tillage Research 53: 87–94. https://doi.org/10.1016/S0167-1987(99)00094-X

Lipiec, J., Arvidsson, J., Murer, E. 2003: Review of modeling crop growth, movement of water and chemicals in relations to topsoil and subsoil compaction. Soil and Tillage Research 73. 15–29. https://doi.org/10.1016/S0167-1987(03)00096-5

Major T., Szakálosné Mátyás K., Horváth A. L. (2012): A gépesítést befolyásoló talajellenállás meghatározása erdővel borított területen „3T System” rétegindikátorral. Erdészettudományi Közlemények 2 (1): 123– 134.

McNabb D.H., Startsev A.D., Nguyen H. 2001: Soil wetness and traffic level effects on bulk density and air- filled porosity of compacted boreal forest soils. Soil Science Society of America Journal. 65:1238–1247. https://doi.org/10.2136/sssaj2001.6541238x

Usowicz B., Lipiec J. 2009: Spatial distribution of soil penetration resistance as affected by soil compaction: the fractal approach. Ecol Complex 6:263–271. https://doi.org/10.1016/j.ecocom.2009.05.005

Rátonyi T. 1999: A talaj fizikai állapotának penetrométeres vizsgálata talajmővelési tartam kísérletben. Doktori (Ph.D) Értekezés. Debrecen

Shrestha S. P., Lanford B. L., Rummer R., Dubois M. 2008: Soil Disturbances from Horse/Mule Logging Operations Coupled with Machines in the Southern United States. International Journal of Forest Engineering 19(1): 17–23. https://doi.org/10.1080/14942119.2008.10702555

Sinnett D., Morgan G., Williams M., Hutchings T. 2008: Soil penetration resistance and tree root development.

Soil Use Manage 24. 273–280. https://doi.org/10.1111/j.1475-2743.2008.00164.x

SPSS 20.0, IBM SPSS Statistics

Szőllősi I. 2003: Talajok tömörödöttségi állapotának jellemzése penetrométeres vizsgálatokkal. Doktori (Ph.D) Értekezés. Debrecen

Várallyay Gy. 2005: Talajvédelmi Stratégia az EU-ban és Magyarországon. Agrokémia és Talajtan, 54. (1–2) 203–216. https://doi.org/10.1556/agrokem.54.2005.1-2.15

Vossbrink J., Horn R. 2004: Modern forestry vehicles and their impact on soil physical properties. European Journal of Forest Research 123: 259–267. https://doi.org/10.1007/s10342-004-0040-8

Wang L. 1997: Assessement of animal skidding and ground machine skidding under mountain conditions.

Journal of Forest Engineering 8(2): 57–64.

Wang L. 1999: Environmentally sound timber extraction techniques for small tree harvesting. ASAE meeting presentation no. 995053. 6. p.

Wilpert K., Schäffer J. 2006: Ecological effects of soil compaction and initial recovery dynamics: a preliminary study. European Journal of Forest Research 125: 129–138. https://doi.org/10.1007/s10342-005-0108-0

Yu H., Mitchell J. 1998: Analysis of cone resistance: review of methods. J Geotech Geoenviron 124. 140–148. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(140)

http1: https://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A0900037.TV (letöltve: 2018.02.01.)

http2: http://erdo-mezo.hu/2015/01/02/talajtomorodottseg-meresere-alapozott-termohely-ertekeles-tapasztalatai- a-nyirsegben/ (letöltve: 2018.02.20.)

Published

2018-07-16

Issue

Section

Articles

How to Cite

Affects of timber logging with forestry machines on soil compaction in Babat-valley, Hungary. (2018). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 16(1), 53-64. https://doi.org/10.56617/tl.3577

Similar Articles

1-10 of 52

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>