Investigation of pollinator communities in permaculture, organic and conventional farms in the Szentendre Island

Authors

  • Fanni Andrea Mészáros Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.
  • Alfréd Szilágyi Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.
  • Róbert KUN Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.
  • Miklós SÁROSPATAKI Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.

DOI:

https://doi.org/10.56617/tl.3435

Keywords:

pollination, sustainable agriculture, ecosystem-service, ecological intensification

Abstract

As a result of agricultural intensification in parallel with the strong growth of the human population, we need to pay more attention to the responsible use of resources and the maintenance of the proper functioning of ecosystems. The various pollinators play a prominent role in the functioning, as they provide about 84% of the production of fruit and vegetable production, which production requires significant resources through artificial pollination. In our case study, we measured the effects of three different farming systems (permaculture, organic and conventional) on Szentendre Island in terms of farm-level temporal average number and diversity of pollinator species groups. Visual sampling was performed in all areas in 2019., for a total of four-time points (May 19, July 4, July 22 and September 05). Of the three farms, the permaculture farm had the highest total temporal average number of pollinators and the diversity of taxonomic groups during the study year. In conclusion, the establishment and maintenance of farms that provide spatially and temporally diverse bee pastures are extremely important in maintaining adequate temporal average number and diversity of pollinators, and thus securing long-term crop production which requires pollination. It seems that permaculture farms can provide this to a greater extent than organic or conventional.

Author Biographies

  • Fanni Andrea Mészáros, Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.

    mm.fanni@gmail.com

  • Alfréd Szilágyi, Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.

    szilagyialfred@gmail.com

  • Róbert KUN, Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.

    rbert.kun@gmail.com

  • Miklós SÁROSPATAKI, Hungarian University of Agriculture and Life Sciences 2100 Gödöllő, Páter k. u. 1.

    sarospataki.miklos@uni-mate.hu

References

Adhikari, S., Burkle, L. A., O’Neill, K. M., Weaver, D. K., Delphia, C. M., Menalled, F. D. 2019: Dryland Organic Farming Partially Offsets Negative Effects of Highly Simplified Agricultural Landscapes on Forbs, Bees, and Bee–Flower Networks. Environmental Entomology.

Ángyán J., Menyhért Z. (szerk.) 2004: Alkalmazkodó növénytermesztés, környezet- és tájgazdálkodás, Szaktudás Kiadóház, Budapest, 560 p

Benjamin, E. F., Reilly, J. R. and Winfree, R. 2014: Pollinator body size mediates the scale at which land use drives crop pollination services. J Appl Ecol, 51: 440–449.

Bihaly, Á., Vaskor, D., Lajos, K., Sárospataki, M. 2018: Effect of semi-natural habitat patches on the pollinator assemblages of sunflower in an intensive agricultural landscape. Hungarian Journal of Landscape Ecology, 16 (1): 45–52.

Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., Hergert, G. W. 2015: Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal, 107(6), 2449–2474.

Bommarco, R., Kleijn, D., Potts, S. G. 2013: Ecological intensification: harnessing ecosystem services for food security. Trends in ecology és evolution, 28(4): 230–238.

Boreux, V., Kushalappa, C.G., Vaast, P., Ghazoul, J. 2013: Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems. Proc. Natl. Acad. Sci. U. S. A., 110: 8387–8392.

Breeze, T. D., Bailey, A. P., Balcombe, K. G. és Potts, S. G. 2011: Pollination services in the UK: how important honey bees? Agriculture, Ecosystems and Environment, 142 (3-4): 137–143.

Bretagnolle, V., Gaba, S. 2015: Weeds for bees? A review. Agron. Sustain. Dev., 35: 891–909.

Crowder, D. W., Jabbour, R. 2014: Relationships between biodiversity and biological control in ecosystems: Current status and future challenges. Biological Control, 75: 8–17.

Dale, V. H., Polasky, S. 2007: Measures of the effects of agricultural practices on ecosystem services. Ecological economics, 64(2): 286–296.

Díaz, S., Tilman, D., Fargione, J., Chapin, F.S., Dirzo, R., Kitzberger, T., Gemmill, B., Zobel, M., Vilá, M., Mitchell, C., Wilby, A., Daily, G. C., Galetti, M., Laurance, W. F., Pretty, J., Naylor, R. L., Power, A. és Harvell, D. 2005: Biodiversity regulation of ecosystem services. In: Hassan, H., Scholes, R., Ash, N. (Eds): Ecosystems and Human WellBeing: Current State and Trends. – Island Press, Washington DC, USA, pp. 297–329.

Földesi, R., Kovács-Hostyánszki, A., Kőrösi, Á., Somay, L., Elek, Z., Markó, V., Sárospataki, M., Bakos, R., Varga, Á., Nyisztor, K., Báldi, A. 2016: Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agricultural and Forest Entomology, 18: 68–75.

Gallai, N., Salles, J.-M., Settele, J., Vaissiére, B.E. 2009: Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68(3): 810–821.

Garibaldi, L., Carvalheiro, L., Vaissière, B., Gemmill-Herren, B., Hipólito, J., Freitas, B., Ngo, H. T., Azzu, N., Saez, A., Åström, J., An, J., Blochtein, B., Buchori, D., Chamorro, F., Silva, F., Devkota, K., Ribeiro, M., Freitas, L., Gaglianone, M. C., Zhang, H. 2016: Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351: 388–391.

Goulson, D., Lye, G. C. és Darvill, B. 2008: Decline and conservation of bumble bees. Ann. Rev. Entomol., 53: 191–208.

Holmgren, D. 2002: Permaculture, Principles és Pathways Beyond Sustainability. Permanent Publications, Hampshire, 286 p.

Holzschuh, A., Steffan-Dewenter, I., Kleijn, D., Tscharntke, T. 2006: Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology, 44(1): 41–49.

Kearns, C.A., Inouye, D.W., Waser, N.M. 1998: Endangered mutualisms: the conservation of plant-pollinator interactions. Ann. Rev. Ecol. Syst., 29: 83–112

Kelemen, E., Nguyen, G., Gomiero T., Kovács, E., Choisis, J., Choisis, N., Paoletti, G. M., Podmaniczky, L., Ryschawy, J., Sarthou, J., Herzog, F., Dennis, P., Balázs, K. 2013: Farmers’ perceptions of biodiversity: Lessons from a discourse-based deliberative valuation study, Land Use Policy, 35: 318–328

Kennedy, C. M., Lonsdorf, E., Neel, M. C., Williams, N. M., Ricketts, T. H., Winfree, R., Kremen, C. 2013: A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 16(5): 584–599.

Klein, A. M., Vaissiére, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. 2007: Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274: 303–313.

Kovács-Hostyánszki, A., Espíndola, A., Vanbergen, A.J., Settele, J., Kremen, C., Dicks, L.V. 2017: Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 20: 673–689.

Kovács-Hostyánszki A. 2019: Beporzók, beporzás, élelmiszertermelés – az IPBES első tematikus tanulmányának fő üzenetei. Természetvédelmi Közlemények, 25: 142–156,

Kovács-Hostyánszki A., Bereczki K., Czúcz B., Fabók V., Fodor L., Kalóczkai Á., Kiss M., Koncz P., Kovács E., Rezneki R., Tanács E., Török K., Vári Á., Zölei A., Zsembery Z. 2019: Nemzeti ökoszisztéma-szolgáltatás térképezés és értékelés, avagy a természetvédelem országos programja. Természetvédelmi Közlemények, 25: 80–90.

Krebs, J., Bach, S. 2018: Permaculture—Scientific Evidence of Principles for the Agroecological Design of Farming Systems. Sustainability, 10(9):3218.

Kremen, C., Williams, N.M., Thorp, W.R. 2002: Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U. S. A. 99, 16812–16816.

Kremen C., Williams N.M., Aizen, M.A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., Packer, L., Potts, S.G., Roulston, T., Steffan-Dewenter, I., Vázquez, D.P., Winfree, R., Adams, L., Crone, E.E., Greenleaf, S.S., Keitt, T. H., Klein, A.M., Regetz, J., Ricketts, T.H. 2007: Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land use change. Ecology Letters, 10: 299–314.

Kremen, C., Miles, A. 2012: Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecology and Society, 17(4): 40.

Mollison, B. 1988: Permaculture, A Designer’s Manual. Tagari Publications, Sisters Creek, 565 p.

Nicholls, C.I., Altieri, M. A. 2013: Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev., 33: 257–274.

Ollerton, J., Winfree, R., Tarrant, S. 2011: How many flowering plants are pollinated by animals? Oikos, 120: 321–326.

Pinke, G., Pál, R., Botta‐Dukát, Z., Chytrý, M. 2009: Weed vegetation and its conservation value in three management systems of Hungarian winter cereals on base‐rich soils. Weed Research, 49: 544–551.

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. 2010: Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25(6): 345–353.

Rands, S.A., Whitney, H.M. 2010: Effects of pollinator density-dependent preferences on field margin visitations in the midst of agricultural monocultures: A modelling approach. Ecological Modelling, 221(9), 1310–1316.

R Core Team 2018: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

Szilágyi A., Podmaniczky L., Mészáros D. 2018: Konvencionális, ökológiai és permakultúrás gazdaságok környezeti fenntarthatósága. Tájökológiai Lapok, 16 (2): 97–112.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., Polasky, S. 2002: Agricultural sustainability and intensive production practices. Nature, 418(6898): 671–677.

UNEP 2010: UNEP Emerging Issues: Global Honey Bee Colony Disorder and Other Threats to Insect Pollinators. United Nations Environment Programme.

Westerkamp, C, Gottsberger, G. 2002: The Costly Crop Pollination Crisis. IN: Kevan P és Imperatriz Fonseca VL (eds) - Pollinating Bees - The Conservation Link Between Agriculture and Nature - Ministry of Environment, Brasília. p. 51–56.

Westphal, C., Steffan-Dewenter, I., Tscharntke, T. 2003: Mass flowering crops enhance pollinator densities at a landscape scale. Ecology Letters, 6(11): 961–965.

Westphal, C., Steffan-Dewenter, I., Tscharntke, T. 2009: Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees. Journal of Applied Ecology, 46(1): 187–193.

Whitefield, P. 2004: The Earth Care Manual, A Permaculture Handbook for Britain és Other Temperate Climates. Permanent Publications, Hampshire, 469 p

Internetes források

http1:https://ec.europa.eu/environment/nature/conservation/species/pollinators/index_en.htm, megtekintve: 2020.01.15.

http2: https://www.orszagjaro.net/szentendrei-sziget/, megtekintve: 2020.01.25.

Published

2021-11-15

Issue

Section

Articles

How to Cite

Investigation of pollinator communities in permaculture, organic and conventional farms in the Szentendre Island. (2021). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKOLÓGIAI LAPOK , 19(2), 133-149. https://doi.org/10.56617/tl.3435

Similar Articles

21-30 of 169

You may also start an advanced similarity search for this article.