Research directions and opportunites supporting the spread of agriculture digitalisation

Authors

  • Katalin Nátz Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet https://orcid.org/0000-0002-5116-6639
  • Dorottya Véghné Kohut Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet
  • Gábor Szalay Zsigmond Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet https://orcid.org/0000-0001-6301-3237

DOI:

https://doi.org/10.18531/Studia.Mundi.2022.09.02.58-70

Keywords:

adat, digitalizáció, agrárium, szolgáltatás, információ, innováció

Abstract

Without digitalisation and automation, it is not possible to gain a competitive advantage in the current market situation, and this is also true for agriculture. Technological developments make it possible to use methods, machines, precision tools and processes in agriculture that reduce production costs and the negative impact on the environment. By reducing costs, farmers will be able to increase production, despite the fact that the labor market is struggling with a lack of resources, which is also true for agriculture. For emerging challenges such as climate change, stringent food and nutrition security standards and changing consumer needs can be addressed by seizing the opportunities offered by technology. To do this, farmers need ready-made solutions based on exponentially generated data. The data needs to be made available to producers in the form of services, thus supporting more efficient decision-making. This solution can also exist in framework of community realization, where there is more trust within the farming community, as againts to technological solutions implemented from the outside from the top down. It is not enough to create the right data environment and usable service, but it is also important to bridge the generation gap and low digital literacy problems. To do this, however, it is essential to create a non-profit data environment that collects data from the digital tools used in the business value chain and then makes it available to farmers in the form of services. This will help you make better management decisions. Holistic and open system thinking is essential for success and sustainable agriculture.

Author Biographies

  • Katalin Nátz, Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet

    PhD student
    E-mail: natz.katalin@phd.uni-mate.hu

  • Dorottya Véghné Kohut, Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet

    PhD student
    E-mail: kohut.dorottya@phd.uni-mate.hu

  • Gábor Szalay Zsigmond, Magyar Agrár- és Élettudományi Egyetem, Vidékfejlesztés és Fenntartható Gazdaság Intézet

    associate professor
    E-mail: szalay.zsigmond.gabor@uni-mate.hu

References

Alter S. (1980): Decision Support System: current practice and continuing challenges, Addison-Wesley Pub

Bronson K. (2018): Smart Farming: Including Rights Holders for Responsible Agricultural Innovation. Technology Innovation Management Review February 2018: 7-14. DOI: https://doi.org/10.22215/timreview/1135

Bronson K. – Knezevic I. (2016): Big Data in food and agriculture. Big Data & Society January-June 2016: 1-5, DOI: https://doi.org/10.1177/2053951716648174

Carbonell D.A. (2016): The Worry Trick: How Your Brain Tricks You into Expecting the Worst and What You Can Do About It. Oakland, CA: New Harbinger.

Carolan M. (2017): Agro-Digital Governance and Life Itself: Food Politics at the Intersection of Code and Affect. Sociologia Ruralis, Volume57, Issue S1 Pages 816-835, DOI: https://doi.org/10.1111/soru.12153

Fielke S. – Taylor B.M. – Jakku E. (2019): Digitalisation of agricultural knowledge and advice networks: A state-of-the- art review. Agricultural Systems, Volume 180, April 2020, 102763, DOI: https://doi.org/10.1016/j.agsy.2019.102763

Gábor A. (1997): Információmenedzsment, Budapest, Aula Kiadó

Herbert Simon: Administrative Behavior (1947), New York

Jacoby M. – Volz F. – Weißenbacher Ch – Stojanovic L. – Usländer T. (2021): An approach for Industrie 4.0-compliant and data-sovereign Digital Twins. Realization of the Industrie 4.0 Asset Administration Shell with a data-sovereignty extension. Automatisierungstechnik, Volume 69 Issue 12, DOI: https://doi.org/10.1515/auto-2021-0074

Kraft P. – Helm R. – Dowling D. (2021): New business models with Industrie 4.0 in the German Mittelstand. International Journal of Technology, Policy and Management, Vol.21 No.1, pp.47 - 68, No. 1, DOI: https://doi.org/10.1504/IJTPM.2021.114308

Larson R. et al. (2011). Intrinsic motivation and positive development. In R. M. Lerner, J. V. Lerner, & J. B. Benson (Eds.), Advances in child development and behavior, Vol. 41. Positive youth development (pp. 89–130). Elsevier Academic Press, DOI: https://doi.org/10.1016/B978-0-12-386492-5.00005-1

Masuda Y. (1980): Az információs társadalom, OMIKK, Budapest

Monostori T. – Kis K. – Komarek L. (2020): Mezőgazdasági és vidékfejesztési kutatások a jövő szolgálatában. Magyar Tudományos Akadémia Szegedi Akadémiai Bizottság, Mezőgazdasági szakbizottság, Szeged

Nátz K. – Véghné K.D. – Szalay Zs.G. (2022): Smart Agriculture, in XVIII. NEMZETKÖZI TUDOMÁNYOS NAPOK A „ZÖLD MEGÁLLAPODÁS” – KIHÍVÁSOK ÉS LEHETŐSÉGEK 2022-05-05, Gyöngyös

Rajkumar R.R. – Lee I. - Sha L.- Stankovic J. (2010): 44.1 Cyber-Physical Systems: The Next Computing Revolution. Conference: Proceedings of the 47th Design Automation Conference, DAC 2010, Anaheim, California, USA, July 13-18, 2010, DOI: https://doi.org/10.1145/1837274.1837461

Sousa M.J. – Rocha Á. (2019): Skills for disruptive digital business. Journal of Business Research, Volume 94, January 2019, Pages 257-263, DOI: https://doi.org/10.1016/j.jbusres.2017.12.051

Szabó P. (2019): Innováció a szőlőszaporításban, Akadémiai Kió, Budapest, DOI: https://doi.org/10.1556/9789634544494

Szőke V. – Kovács L. (2020): Mezőgazdaság 4.0 – relevancia, lehetőségek, kihívások

Szűts Z. – Yoo J.: „Big Data, az információs társadalom új paradigmája”, Információs Társadalom, XVI. évf. (2016) 1. szám, 8-28. old.

USAID, 2018. Digital farmer profile: Reimagining Smallholder Agriculture. Washington D.C.: USAID 43. p.

Williams L.D. (2021): Concepts of Digital Economy and Industry 4.0 in Intelligent and information systems, International Journal of Intelligent Networks 2 (2021) 122–129, DOI: https://doi.org/10.1016/j.ijin.2021.09.002

Wolfert S. – Ge L. – Verdouw C. – Bogaardt M.J. (2017): Big Data in Smart Farming – A review. Agricultural Systems, Volume 153, May 2017, Pages 69-80, DOI: https://doi.org/10.1016/j.agsy.2017.01.023

Wolfert S. – Goense D. – Sorensen C. (2014): A Future Internet Collaboration Platform for Safe and Healthy Food from Farm to Fork, Annual SRII Global Conference, DOI: https://doi.org/10.1109/SRII.2014.47

Published

2022-06-28

Similar Articles

21-27 of 27

You may also start an advanced similarity search for this article.