A bioszén néhány hatása a talaj mikroorganizmusaira

Áttekintő cikk

Szerzők

DOI:

https://doi.org/10.70809/6553

Kulcsszavak:

bioszén, mikrobiális biomassza szén, mikrobiális biomassza nitrogén, bazális talajlégzés, enzimaktivitás

Absztrakt

A bioszén talajjavítóként való felhasználása a talaj fizikai és kémiai tulajdonságainak javítására szolgáló win/win technológia, ugyanakkor keveset tudunk a bioszén talaj mikroorganizmusokra gyakorolt hatásairól. Ez az áttekintés a talaj mikrobiológiai jellemzőinek változásaira hívja fel a figyelmet, melyek a következők:1) mikrobiális biomassza szén (MBC), mikrobiális biomassza nitrogén (MBN) és bazális talajlégzés (BSR) alakulása. 2) A β-glükozidáz, dehidrogenáz és ureáz enzimek aktivitása különböző dózisokban és eltérő típusú bioszenekben. Az MBC, MBN, BSR β-glükozidáz, dehidrogenáz, ureáz enzimek aktivitása reagált a bioszén kijuttatására a dózistól, a bioszén típustól, a szervetlen műtrágya kijuttatásától és a termesztett növénytől függően. Az MBC, MBN és BSR lineárisan nőtt a gyapotszalma bioszén kijuttatást követően, még az alacsony dózisok is hatásosak voltak a β-glükozidáz és a dehidrogenáz aktivitás növelésére. Csak nagy dózisú búza és kukorica szalmából származó bioszén hatékonyan növelte az MBC-t, míg a sertéstrágyából nyert bioszén esetében ez az emelkedés lineáris volt. Az MBN az összes bioszén típust tekintve emelkedő tendenciát mutatott, és a bioszén arányának növekedése a legmagasabb dózisok mellett volt a legnagyobb. A búzaszalma alkalmazása három időszakban (48, 60 és 72 hónap) jelentősen csökkentette az ureáz aktivitást, míg a BSR csak a leghosszabb távú megfigyelésben csökkent nagyobb mértékben. A másik oldalon a búzaszalma bioszén a β-glükozidáz és az ureáz aktivitás fokozatos növekedését okozta NPK (nitrogén-foszfor-kálium) adagolásnál 72 hónappal a kijuttatás után.

Szerző életrajzok

  • Evan Dayoub, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, 8360-Hungary.

    levelezőszerző
    dayoubevan@gmail.com

  • Tóth Zoltán, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, 8360-Hungary

    toth.zoltan@uni-mate.hu

  • Anda Angéla, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, 8360-Hungary

    Anda.Angela@uni-mate.hu

Hivatkozások

Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology. 98 243–253, 021. https://doi.org/10.1016/j.apsoil.2015.10.021

Ameloot, N., Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L., & Sleutel, S. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry. 57 401–410. https://doi.org/10.1016/j.soilbio.2012.10.025

Asiloglu, R., Samuel, S. O., & B, S. 2021. Biochar affects taxonomic and functional community composition of protists. Biology and Fertility of Soils. 57 15–29. 00374-020-01502–01508. https://doi.org/10.1007/s00374-020-01502-8

Azeem, M., Hayat, R., Hussain, Q., Tahir, M. I., Imran, M., Abbas, Z., & Irfan, M. 2019. Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arabian Journal of Geosciences. 12 (10). https://doi.org/10.1007/s12517-019-4482-1

Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry. 43 296–301. https://doi.org/10.1016/j.soilbio.2010.10.014

Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. 2016. Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment. 233 308–317. https://doi.org/10.1016/j.agee.2016.09.016

Bamminger, C., Zaiser, N., Zinsser, P., Lamers, M., Kammann, C., & Marhan, S. 2014. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biology and Fertility of Soils. 50 1189–1200. https://doi.org/10.1007/s00374-014-0968-x

Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., & Patra, A. K. 2016. Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology. 107 360–367. https://doi.org/10.1016/j.apsoil.2016.07.011

Bremner, J. M. & R.L Mulvaney .1978. Urease activity in soils R.G. In Burns (Ed.), Soil Enzymes (pp. 149–196). Academic Press.

Brewer, C. E., & Brown, R. C. 2012. Biochar. In A. Sayigh (Ed.), Comprehensive Renewable Energy (pp. 357–384). Elsevier. https://doi.org/10.1016/B978-0-08-087872-0.00524-2

Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., & Ahmedna, M. (n.d.).

Cernansky, R. 2015. Agriculture: State-of-the-art soil. Nature. 517 258–260. https://doi.org/10.1038/517258a

Chen, J., Liu, X., Zheng, J., Zhang, B., Lu, H., Chi, Z., Pan, G., Li, L., Zheng, J., Zhang, X., Wang, J., & Yu, X. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology. 71 33–44. https://doi.org/10.1016/j.apsoil.2013.05.003

Chen, J., Sun, X., Li, L., Liu, X., Zhang, B., Zheng, J., & Pan, G. 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science. 67 (6) 857–867. https://doi.org/10.1111/ejss.12388

Dai, Z., Hu, J., Xu, X., Zhang, L., Brookes, P. C., He, Y., & Xu, J. 2016. Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils. Scientific Reports. 6 (36101), 1038 3 6101. https://doi.org/10.1038/srep36101

Demisie, W., Liu, Z., & Zhang, M. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 121 214–221. https://doi.org/10.1016/j.catena.2014.05.020

Doan, T. T., Bouvier, C., Bettarel, Y., Bouvier, T., Henry-des-Tureaux, T., Janeau, J. L., Lamballe, P., Nguyen, B. V., & Jouquet, P. 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Applied Soil Ecology. 73 78–86. https://doi.org/10.1016/j.apsoil.2013.08.016

Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., & Hall, P. A. 2013. Microbial utilization of biochar-derived carbon. Science of the Total Environment. 465 288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090

Futa, B., Oleszczuk, P., Andruszczak, S., Kwiecińska-Poppe, E., & Kraska, P. 2020. Effect of Natural Aging of Biochar on Soil Enzymatic Activity and Physicochemical Properties in Long-Term Field Experiment. Agronomy. 10 (3), 449. https://doi.org/10.3390/agronomy10030449

Gao, S., & DeLuca, T. H. 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2018.09.002

Germano, M. G., Cannavan, F. de S., Mendes, L. W., Lima, A. B., Teixeira, W. G., Pellizari, V. H., & Tsai, S. M. 2012. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesquisa Agropecuaria Brasileira. 47 (5) 654–664. https://doi.org/10.1590/s0100-204x2012000500004

Gil-Sotres, F., Trasar-Cepeda, C., Leiros, M. C., & Seoane, S. 2005.

Gomez, J. D., Denef, K., Stewart, C. E., Zheng, J., & Cotrufo, M. F. 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. European Journal of Soil Science. 65 28¬39. https://doi.org/10.1111/ejss.12097

Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., & Elad, Y. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil. 337 481–496. https://doi.org/10.1007/s11104-010-0544-6

Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., & Thies, J. E. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology. 60 192¬205. https://doi.org/10.1007/s00248-010-9689-3

Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng. 2015. H.Y.: Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment. 206 46–59. https://doi.org/10.1016/j.agee.2015.03.015

Herrmann, L., Lesueur, D., Robin, A., Robain, H., Wiriyakitnateekul, W., & Brau, L. 2019. Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand. Science of the Total Environment. 689 (970–979), 441. https://doi.org/10.1016/j.scitotenv.2019.06.441

Huang, D. L., Liu, L. S., Zeng, G. M., Xu, P., Huang, C., Deng, L. J., Wang, R. Z., & Wan, J. 2017. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere. 174 (130) (545–553). https://doi.org/10.1016/j.chemosphere.2017.01.130

Irfan, M., Hussain, Q., & KS, K. 2019. Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arabian Journal of Geosciences. 12 (95), 12517-019-4239-. https://doi.org/10.1007/s12517-019-4239-x

Jaafar, N. M., Clode, P. L., & Abbott, L. K. 2014. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. Journal of Integrative Agriculture. 13 483–490. https://doi.org/10.1016/S2095-3119(13)60703-0

Jeffery, S., Verheijen, F. G. A., Bastos, A. C., & Velde, M. 2014. A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis’: On the importance of accurate reporting in supporting a fast-moving research field with policy implications. Global Change Biology and Bioenergy. 6 176–179. https://doi.org/10.1111/gcbb.12076

Jia, R., Qu, Z., You, P., & Qu, D. 2018. Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels. Science of The Total Environment. 612 223–230. https://doi.org/10.1016/j.scitotenv.2017.08.126

Jiang, Y., Wang, X., Zhao, Y., Zhang, C., Jin, Z., S, S., & Ping, L. 2021. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Frontiers in Bioengineering and. Biotechnology. 9 (728530). https://doi.org/10.3389/fbioe.2021.728530

Jin, H. 2010. Characterization of microbial life colonizing biochar and biocharamended soils [PhD Dissertation,]. Cornell University.

Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., & Amonette, J. E. 2010. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research. 501–515. https://doi.org/10.1071/SR10009

Joseph, S., Husson, O., Graber, E., Zwieten, L., Taherymoosavi, S., Thomas, T., & Donne, S. 2015. The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy. 5(3), 322–340. https://doi.org/10.3390/agronomy5030322

Khodadad, C. L. M., Zimmerman, A. R., Green, S. J., Uthandi, S., & Foster, J. S. 2011. Taxaspecific.

Khan Z, K. Zhang, M.N. Khan, Bi. J, K. Zhu, L. Luo and L Hu .2022. How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System. Fronteirs Plant Science. 13 853449. https://doi.org/10.3389/fpls.2022.853449

Kim, J.-S., Sparovek, S., Longo, R. M., Melo, W. J., & Crowley, D. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry. 39 648 690. https://doi.org/10.1016/j.soilbio.2006.08.010

Lammirato, C., Miltner, A., & Kaestner, M. 2011. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biology and Biochemistry. 43 1936–1942. https://doi.org/10.1016/j.soilbio.2011.05.021

Lehmann, J. 2007. A handful of carbon. Nature. 447 143–144. https://doi.org/10.1038/447143a

Lehmann, J., Kuzyakov, Y., Pan, G., & Ok, Y. S. 2015. Biochars and the plant-soil interface. Plant Soil. 395 1–5. https://doi.org/10.1007/s11104-015-2658-3

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biology and Biochemistry. 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022

Li, S., Liang, C., & Shangguan, Z. 2017. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Science of The Total Environment. 607–608, 109–119. https://doi.org/10.1016/j.scitotenv.2017.06.275

Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luiza, F. J., Engelhard, M. H., Neves, E. G., & Wirick, S. 2008. Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta. 72 6069–6078. https://doi.org/10.1016/j.gca.2008.09.028

Liao, N., Li, Q., Zhang, W., Zhou, G., Ma, L., Min, W., & Hou, Z. 2016. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. European Journal of Soil Biology.72 27–34. https://doi.org/10.1016/j.ejsobi.2015.12.008

Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources. 13 3429–3446. https://doi.org/10.15376/biores.13.2.3429-3446

Mierzwa-Hersztek, M., Gondek, K., & Baran, A. 2016. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Applied Soil Ecology. 105 144–150. https://doi.org/10.1016/j.apsoil.2016.04.006

Nannipieri, P., Ceccanti, C., Servelli, S., & E. 1980. Matarese Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Science Society of America Journal. 44 1011–1016. https://doi.org/10.2136/sssaj1980.03615995004400050028x

Nguyen, T. T. N., Wallace, H. M., Xu, C. Y., Zwieten, L. V., Weng, Z. H., Xu, Z., Che, R., Tahmasbian, I., Hu, H.-W. & Bai, S. H. 2018. The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment. 636 142–151. https://doi.org/10.1016/j.scitotenv.2018.04.278

Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. 2016. The microbiomes and metagenomes of forest biochars. Scientific Reports. 6 26425. https://doi.org/10.1038/srep26425

Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma. 274 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029

O’Neill, B., Grossman, J., Tsai, M. T., Gomes, J. E., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. 2009. Bacterial community composition in Brazilian Anthrosols and adjacent soils charac-terized using culturing and molecular identification. Microbial Ecology. 58 23-35, https://doi.org/10.1007/s00248-009-9515-y

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., & Chang, S. X. 2019. Response of microbial communities to biochar-amended soils: A critical review (Issue ar,1, pp. 3–22). https://doi.org/10.1007/s42773-019-00009-2

Pascual, J. A., Hernández, T., Ayuso, M., & C. 1998. Garcı́a Enzymatic activities in an arid soil amended with urban wastes. Laboratory experiment Bioresource Technology.64 131–138. https://doi.org/10.1016/S0960-8524(97)00171-5

Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. 2011. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils. 48(5), 511–517. https://doi.org/10.1007/s00374-011-0644-3

Pietikainen, J., Kiikkila, O., & Fritze, H. 2000. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus.OIKOS.89 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x

Pokharel, P., Ma, Z., & Chang, S. X. 2020. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis. Biochar. 2(65–79), 42773-020-00039–1. https://doi.org/10.1007/s42773-020-00039-1

Prayogo, C., Jones, J. E., Baeyens, J., & G.D. 2014. Bending Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure Biol. Fertil. Soils. 50 695–702. https://doi.org/10.1007/s00374-013-0884-5

Preston, C. M., & Schmidt, M. W. I. 2006. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences. 3 397–420. https://doi.org/10.5194/bg-3-397-2006

Quilliam, R. S., DeLuca, T. H., & Jones, D. L. 2013. Biochar application rate reduces root nodulation in clover but increases nitrogenase activity in nodules. Plant & Soil. 366 83 92. https://doi.org/10.1007/s11104-012-1411-4

Rivera-Utrilla, J., Bautilsta-Toledo, I., Ferro-Carcia, M. A., & Moreno-Catilla, C. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology.76 1209–1215. https://doi.org/10.1002/jctb.506

Rondon, M. A., Lehmann, J., Ramirez, J., & Hurtado, M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology & Fertility of Soils. 43 699–708. https://doi.org/10.1007/s00374-006-0152-z

Rousk, J., Dempster, D. N., & Jones, D. L. 2013. Transient biochar effects on decomposer microbial growth rates: Evidence from two agricultural case-studies. European Journal of Soil Science. 64 770–776. https://doi.org/10.1111/ejss.12103

Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. 2014. Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology. 60 9–15. https://doi.org/10.1016/j.ejsobi.2013.10.007

Samonin, V. V., & Elikova, E. E. 2004. A study of the adsorption of bacterial cells on porous materials. Microbiology. 73 696–701. https://doi.org/10.1007/s11021-005-0011-1

Shao, Y., Zhang, W., Shen, J., Zhou, L., Xia, H., Shu, W., Ferris, H., & Fu, S. 2008. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology and Biochemistry. 40 2040–2046. https://doi.org/10.1016/j.soilbio.2008.04.014

Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Australian Journal of Soil Research. 48 546–554. https://doi.org/10.1071/SR10002

Taketani, R. G., Lima, A. B., Jesus, E. C., Teixeira, W. G., Tiedje, J. M., & Tsai, S. M. 2013. Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek. 104 233–242. https://doi.org/10.1007/s10482-013-9942-0

Taketani, R. G., & Tsai, S. M. 2010. The influence of different land uses on the structure of archaeal communities in Amazonian Anthrosols based on 16S rRNA and amoA genes. Microbial Ecology. 59 734–743. https://doi.org/10.1007/s00248-010-9638-1

Verheijen, F., Jeffery, S., Bastos, A. C., Velde, M., & Diafas, I. 2010. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions. In EUR 24099 EN, Office for the Official Publications of the European Communities.

Walelign, D. & Z. 2015. MingkuiEffect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research. 10 755–766.

Wang, M., Yu, X., Weng, X., Zeng, X., Li, M., & Sui, X. 2023. Meta-analysis of the effects of biochar application on the diversity of soil bacteria and fungi. Microorganisms. 11(3). https://doi.org/10.3390/microorganisms11030641

Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil. 300 9–20. https://doi.org/10.1007/s11104-007-9391-5

Xiao, Q., Zhu, L., Shen, Y., & Li, S. 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research. 196 284–293. https://doi.org/10.1016/j.fcr.2016.07.014

Xu, N., Tan, G., Wang, H., & Gai, X. 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology. 74 1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004

Yu, L., Yu, M., Lu, X., Tang, C., Liu, X., Brookes, P. C., & Xu, J. 2018. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Science of The Total Environnent. 640 (1221–1230), 018. https://doi.org/10.1016/j.scitotenv.2018.06.018

Zackrisson, O., Nilsson, M. C., & Wardle, D. A. 1996. Key ecological function of charcoal from wildfire in the Boreal forest. Oikos.77 10–19. https://doi.org/10.2307/3545580

Zhang, G., Guo, X., Zhu, Y., Liu, X., Han, Z., & Sun, K. 2018. The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma. 328 100–108. https://doi.org/10.1016/j.geoderma.2018.05.009

Zhu, X., Chen, B., Zhu, L., & Xing, B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution. 227 98–115. https://doi.org/10.1016/j.envpol.2017.04.032

Letöltések

Megjelent

2024-09-30

Folyóirat szám

Rovat

Cikkek

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei

1 2 > >>