Some Effects of Biochar on Soil Microorganisms
A review article
DOI:
https://doi.org/10.70809/6553Keywords:
biochar, microbial biomass carbon, microbial biomass nitrogen, basal soil respiration, enzyme activityAbstract
Using biochar as a soil amendment is suggested to be a win/win technology for enhancing physical and chemical soil properties, yet little is known about the effects of biochar on soil microorganisms. This review underscores twofold of soil microbiological features studied in short-term experiments. 1) microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and basal soil respiration (BSR). 2) β-glucosidase, dehydrogenase, and urease enzymes activities under different doses and types of biochar and soil. MBC, MBN, BSR β-glucosidase, dehydrogenase, and urease and enzymes activities responded to biochar application depending on biochar dose, type, inorganic fertilizer application, soil type and cultivated plant. MBC, MBN, and BSR increased linearly after gradual amendments of cotton straw biochar while just low doses were effective for raising β-glucosidase, and dehydrogenase activities. Only high doses of wheat and corn straw biochar were effective to increase MBC while linear increments were witnessed under swine manure biochar. Across all biochar types, MBN showed an upward trend with increasing biochar rates hitting the heyday at the highest doses. On the other side, wheat straw and apple branch biochar caused gradual increments in β-glucosidase and urease activity with NPK (nitrogen-phosphorous-potassium) amendment after 72 months.
References
Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. 2016. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology. 98 243–253, 021. https://doi.org/10.1016/j.apsoil.2015.10.021
Ameloot, N., Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L., & Sleutel, S. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry. 57 401–410. https://doi.org/10.1016/j.soilbio.2012.10.025
Asiloglu, R., Samuel, S. O., & B, S. 2021. Biochar affects taxonomic and functional community composition of protists. Biology and Fertility of Soils. 57 15–29. 00374-020-01502–01508. https://doi.org/10.1007/s00374-020-01502-8
Azeem, M., Hayat, R., Hussain, Q., Tahir, M. I., Imran, M., Abbas, Z., & Irfan, M. 2019. Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arabian Journal of Geosciences. 12 (10). https://doi.org/10.1007/s12517-019-4482-1
Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry. 43 296–301. https://doi.org/10.1016/j.soilbio.2010.10.014
Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. 2016. Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment. 233 308–317. https://doi.org/10.1016/j.agee.2016.09.016
Bamminger, C., Zaiser, N., Zinsser, P., Lamers, M., Kammann, C., & Marhan, S. 2014. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biology and Fertility of Soils. 50 1189–1200. https://doi.org/10.1007/s00374-014-0968-x
Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., & Patra, A. K. 2016. Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology. 107 360–367. https://doi.org/10.1016/j.apsoil.2016.07.011
Bremner, J. M. & R.L Mulvaney .1978. Urease activity in soils R.G. In Burns (Ed.), Soil Enzymes (pp. 149–196). Academic Press.
Brewer, C. E., & Brown, R. C. 2012. Biochar. In A. Sayigh (Ed.), Comprehensive Renewable Energy (pp. 357–384). Elsevier. https://doi.org/10.1016/B978-0-08-087872-0.00524-2
Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., & Ahmedna, M. (n.d.).
Cernansky, R. 2015. Agriculture: State-of-the-art soil. Nature. 517 258–260. https://doi.org/10.1038/517258a
Chen, J., Liu, X., Zheng, J., Zhang, B., Lu, H., Chi, Z., Pan, G., Li, L., Zheng, J., Zhang, X., Wang, J., & Yu, X. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology. 71 33–44. https://doi.org/10.1016/j.apsoil.2013.05.003
Chen, J., Sun, X., Li, L., Liu, X., Zhang, B., Zheng, J., & Pan, G. 2016. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar. European Journal of Soil Science. 67 (6) 857–867. https://doi.org/10.1111/ejss.12388
Dai, Z., Hu, J., Xu, X., Zhang, L., Brookes, P. C., He, Y., & Xu, J. 2016. Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils. Scientific Reports. 6 (36101), 1038 3 6101. https://doi.org/10.1038/srep36101
Demisie, W., Liu, Z., & Zhang, M. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 121 214–221. https://doi.org/10.1016/j.catena.2014.05.020
Doan, T. T., Bouvier, C., Bettarel, Y., Bouvier, T., Henry-des-Tureaux, T., Janeau, J. L., Lamballe, P., Nguyen, B. V., & Jouquet, P. 2014. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Applied Soil Ecology. 73 78–86. https://doi.org/10.1016/j.apsoil.2013.08.016
Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., & Hall, P. A. 2013. Microbial utilization of biochar-derived carbon. Science of the Total Environment. 465 288–297. https://doi.org/10.1016/j.scitotenv.2013.03.090
Futa, B., Oleszczuk, P., Andruszczak, S., Kwiecińska-Poppe, E., & Kraska, P. 2020. Effect of Natural Aging of Biochar on Soil Enzymatic Activity and Physicochemical Properties in Long-Term Field Experiment. Agronomy. 10 (3), 449. https://doi.org/10.3390/agronomy10030449
Gao, S., & DeLuca, T. H. 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2018.09.002
Germano, M. G., Cannavan, F. de S., Mendes, L. W., Lima, A. B., Teixeira, W. G., Pellizari, V. H., & Tsai, S. M. 2012. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesquisa Agropecuaria Brasileira. 47 (5) 654–664. https://doi.org/10.1590/s0100-204x2012000500004
Gil-Sotres, F., Trasar-Cepeda, C., Leiros, M. C., & Seoane, S. 2005.
Gomez, J. D., Denef, K., Stewart, C. E., Zheng, J., & Cotrufo, M. F. 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. European Journal of Soil Science. 65 28¬39. https://doi.org/10.1111/ejss.12097
Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., & Elad, Y. 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil. 337 481–496. https://doi.org/10.1007/s11104-010-0544-6
Grossman, J. M., O’Neill, B. E., Tsai, S. M., Liang, B., Neves, E., Lehmann, J., & Thies, J. E. 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology. 60 192¬205. https://doi.org/10.1007/s00248-010-9689-3
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng. 2015. H.Y.: Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment. 206 46–59. https://doi.org/10.1016/j.agee.2015.03.015
Herrmann, L., Lesueur, D., Robin, A., Robain, H., Wiriyakitnateekul, W., & Brau, L. 2019. Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand. Science of the Total Environment. 689 (970–979), 441. https://doi.org/10.1016/j.scitotenv.2019.06.441
Huang, D. L., Liu, L. S., Zeng, G. M., Xu, P., Huang, C., Deng, L. J., Wang, R. Z., & Wan, J. 2017. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere. 174 (130) (545–553). https://doi.org/10.1016/j.chemosphere.2017.01.130
Irfan, M., Hussain, Q., & KS, K. 2019. Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: A 2-year field study. Arabian Journal of Geosciences. 12 (95), 12517-019-4239-. https://doi.org/10.1007/s12517-019-4239-x
Jaafar, N. M., Clode, P. L., & Abbott, L. K. 2014. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. Journal of Integrative Agriculture. 13 483–490. https://doi.org/10.1016/S2095-3119(13)60703-0
Jeffery, S., Verheijen, F. G. A., Bastos, A. C., & Velde, M. 2014. A comment on ‘Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis’: On the importance of accurate reporting in supporting a fast-moving research field with policy implications. Global Change Biology and Bioenergy. 6 176–179. https://doi.org/10.1111/gcbb.12076
Jia, R., Qu, Z., You, P., & Qu, D. 2018. Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels. Science of The Total Environment. 612 223–230. https://doi.org/10.1016/j.scitotenv.2017.08.126
Jiang, Y., Wang, X., Zhao, Y., Zhang, C., Jin, Z., S, S., & Ping, L. 2021. Effects of Biochar Application on Enzyme Activities in Tea Garden Soil. Frontiers in Bioengineering and. Biotechnology. 9 (728530). https://doi.org/10.3389/fbioe.2021.728530
Jin, H. 2010. Characterization of microbial life colonizing biochar and biocharamended soils [PhD Dissertation,]. Cornell University.
Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., Zwieten, L., Kimber, S., Cowie, A., Singh, B. P., Lehmann, J., Foidl, N., Smernik, R. J., & Amonette, J. E. 2010. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research. 501–515. https://doi.org/10.1071/SR10009
Joseph, S., Husson, O., Graber, E., Zwieten, L., Taherymoosavi, S., Thomas, T., & Donne, S. 2015. The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy. 5(3), 322–340. https://doi.org/10.3390/agronomy5030322
Khodadad, C. L. M., Zimmerman, A. R., Green, S. J., Uthandi, S., & Foster, J. S. 2011. Taxaspecific.
Khan Z, K. Zhang, M.N. Khan, Bi. J, K. Zhu, L. Luo and L Hu .2022. How Biochar Affects Nitrogen Assimilation and Dynamics by Interacting Soil and Plant Enzymatic Activities: Quantitative Assessment of 2 Years Potted Study in a Rapeseed-Soil System. Fronteirs Plant Science. 13 853449. https://doi.org/10.3389/fpls.2022.853449
Kim, J.-S., Sparovek, S., Longo, R. M., Melo, W. J., & Crowley, D. 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry. 39 648 690. https://doi.org/10.1016/j.soilbio.2006.08.010
Lammirato, C., Miltner, A., & Kaestner, M. 2011. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biology and Biochemistry. 43 1936–1942. https://doi.org/10.1016/j.soilbio.2011.05.021
Lehmann, J. 2007. A handful of carbon. Nature. 447 143–144. https://doi.org/10.1038/447143a
Lehmann, J., Kuzyakov, Y., Pan, G., & Ok, Y. S. 2015. Biochars and the plant-soil interface. Plant Soil. 395 1–5. https://doi.org/10.1007/s11104-015-2658-3
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biology and Biochemistry. 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
Li, S., Liang, C., & Shangguan, Z. 2017. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Science of The Total Environment. 607–608, 109–119. https://doi.org/10.1016/j.scitotenv.2017.06.275
Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J. E., Skjemstad, J. O., Luiza, F. J., Engelhard, M. H., Neves, E. G., & Wirick, S. 2008. Stability of biomass-derived black carbon in soils. Geochimica et Cosmochimica Acta. 72 6069–6078. https://doi.org/10.1016/j.gca.2008.09.028
Liao, N., Li, Q., Zhang, W., Zhou, G., Ma, L., Min, W., & Hou, Z. 2016. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. European Journal of Soil Biology.72 27–34. https://doi.org/10.1016/j.ejsobi.2015.12.008
Liu, Z., Niu, W., Chu, H., Zhou, T., & Niu, Z. 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources. 13 3429–3446. https://doi.org/10.15376/biores.13.2.3429-3446
Mierzwa-Hersztek, M., Gondek, K., & Baran, A. 2016. Effect of poultry litter biochar on soil enzymatic activity, ecotoxicity and plant growth. Applied Soil Ecology. 105 144–150. https://doi.org/10.1016/j.apsoil.2016.04.006
Nannipieri, P., Ceccanti, C., Servelli, S., & E. 1980. Matarese Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Science Society of America Journal. 44 1011–1016. https://doi.org/10.2136/sssaj1980.03615995004400050028x
Nguyen, T. T. N., Wallace, H. M., Xu, C. Y., Zwieten, L. V., Weng, Z. H., Xu, Z., Che, R., Tahmasbian, I., Hu, H.-W. & Bai, S. H. 2018. The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment. 636 142–151. https://doi.org/10.1016/j.scitotenv.2018.04.278
Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. 2016. The microbiomes and metagenomes of forest biochars. Scientific Reports. 6 26425. https://doi.org/10.1038/srep26425
Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. 2016. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma. 274 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029
O’Neill, B., Grossman, J., Tsai, M. T., Gomes, J. E., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. 2009. Bacterial community composition in Brazilian Anthrosols and adjacent soils charac-terized using culturing and molecular identification. Microbial Ecology. 58 23-35, https://doi.org/10.1007/s00248-009-9515-y
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., & Chang, S. X. 2019. Response of microbial communities to biochar-amended soils: A critical review (Issue ar,1, pp. 3–22). https://doi.org/10.1007/s42773-019-00009-2
Pascual, J. A., Hernández, T., Ayuso, M., & C. 1998. Garcı́a Enzymatic activities in an arid soil amended with urban wastes. Laboratory experiment Bioresource Technology.64 131–138. https://doi.org/10.1016/S0960-8524(97)00171-5
Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. 2011. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils. 48(5), 511–517. https://doi.org/10.1007/s00374-011-0644-3
Pietikainen, J., Kiikkila, O., & Fritze, H. 2000. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus.OIKOS.89 231–242. https://doi.org/10.1034/j.1600-0706.2000.890203.x
Pokharel, P., Ma, Z., & Chang, S. X. 2020. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis. Biochar. 2(65–79), 42773-020-00039–1. https://doi.org/10.1007/s42773-020-00039-1
Prayogo, C., Jones, J. E., Baeyens, J., & G.D. 2014. Bending Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure Biol. Fertil. Soils. 50 695–702. https://doi.org/10.1007/s00374-013-0884-5
Preston, C. M., & Schmidt, M. W. I. 2006. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences. 3 397–420. https://doi.org/10.5194/bg-3-397-2006
Quilliam, R. S., DeLuca, T. H., & Jones, D. L. 2013. Biochar application rate reduces root nodulation in clover but increases nitrogenase activity in nodules. Plant & Soil. 366 83 92. https://doi.org/10.1007/s11104-012-1411-4
Rivera-Utrilla, J., Bautilsta-Toledo, I., Ferro-Carcia, M. A., & Moreno-Catilla, C. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. Journal of Chemical Technology and Biotechnology.76 1209–1215. https://doi.org/10.1002/jctb.506
Rondon, M. A., Lehmann, J., Ramirez, J., & Hurtado, M. 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology & Fertility of Soils. 43 699–708. https://doi.org/10.1007/s00374-006-0152-z
Rousk, J., Dempster, D. N., & Jones, D. L. 2013. Transient biochar effects on decomposer microbial growth rates: Evidence from two agricultural case-studies. European Journal of Soil Science. 64 770–776. https://doi.org/10.1111/ejss.12103
Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F., & Castaldi, S. 2014. Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology. 60 9–15. https://doi.org/10.1016/j.ejsobi.2013.10.007
Samonin, V. V., & Elikova, E. E. 2004. A study of the adsorption of bacterial cells on porous materials. Microbiology. 73 696–701. https://doi.org/10.1007/s11021-005-0011-1
Shao, Y., Zhang, W., Shen, J., Zhou, L., Xia, H., Shu, W., Ferris, H., & Fu, S. 2008. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology and Biochemistry. 40 2040–2046. https://doi.org/10.1016/j.soilbio.2008.04.014
Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. 2010. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Australian Journal of Soil Research. 48 546–554. https://doi.org/10.1071/SR10002
Taketani, R. G., Lima, A. B., Jesus, E. C., Teixeira, W. G., Tiedje, J. M., & Tsai, S. M. 2013. Bacterial community composition of anthropogenic biochar and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie van Leeuwenhoek. 104 233–242. https://doi.org/10.1007/s10482-013-9942-0
Taketani, R. G., & Tsai, S. M. 2010. The influence of different land uses on the structure of archaeal communities in Amazonian Anthrosols based on 16S rRNA and amoA genes. Microbial Ecology. 59 734–743. https://doi.org/10.1007/s00248-010-9638-1
Verheijen, F., Jeffery, S., Bastos, A. C., Velde, M., & Diafas, I. 2010. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions. In EUR 24099 EN, Office for the Official Publications of the European Communities.
Walelign, D. & Z. 2015. MingkuiEffect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research. 10 755–766.
Wang, M., Yu, X., Weng, X., Zeng, X., Li, M., & Sui, X. 2023. Meta-analysis of the effects of biochar application on the diversity of soil bacteria and fungi. Microorganisms. 11(3). https://doi.org/10.3390/microorganisms11030641
Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant and Soil. 300 9–20. https://doi.org/10.1007/s11104-007-9391-5
Xiao, Q., Zhu, L., Shen, Y., & Li, S. 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Research. 196 284–293. https://doi.org/10.1016/j.fcr.2016.07.014
Xu, N., Tan, G., Wang, H., & Gai, X. 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology. 74 1–8. https://doi.org/10.1016/j.ejsobi.2016.02.004
Yu, L., Yu, M., Lu, X., Tang, C., Liu, X., Brookes, P. C., & Xu, J. 2018. Combined application of biochar and nitrogen fertilizer benefits nitrogen retention in the rhizosphere of soybean by increasing microbial biomass but not altering microbial community structure. Science of The Total Environnent. 640 (1221–1230), 018. https://doi.org/10.1016/j.scitotenv.2018.06.018
Zackrisson, O., Nilsson, M. C., & Wardle, D. A. 1996. Key ecological function of charcoal from wildfire in the Boreal forest. Oikos.77 10–19. https://doi.org/10.2307/3545580
Zhang, G., Guo, X., Zhu, Y., Liu, X., Han, Z., & Sun, K. 2018. The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil. Geoderma. 328 100–108. https://doi.org/10.1016/j.geoderma.2018.05.009
Zhu, X., Chen, B., Zhu, L., & Xing, B. 2017. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution. 227 98–115. https://doi.org/10.1016/j.envpol.2017.04.032
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Evan Dayoub, Tóth Zoltán, Anda Angéla
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).