A methodological study on local application of the FAO-56 Penman-Monteith reference evapotranspiration equation
Keywords:
actual evapotranspiration, reference evapotranspiration, crop coefficientAbstract
In our study we discuss the theory and application of the FAO-56 Penman-Monteith equation to count reference evapotranspiration (ET0). Establishing ET0 derived from meteorological variables, together with crop coefficient (Kc), the actual ET could be estimated easily for a desired time-period (from hours to seasons). Daily evapotranspiration of common reed (Pragmites australis) was measured in evapotranspirometers. The measured ET was used to calculate Kc locally. Our study confirmed the earlier investigations that reed stand transpired more water than open water bodies in hot season.
References
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.
Anda, A., Teixeira da Silva, J. A. and Soós, G. 2014. Evapotranspiration and crop coefficient of common reed at the surroundings of Lake Balaton, Hungary, Aquatic Botany. 116. 53–59. https://doi.org/10.1016/j.aquabot.2014.01.008
Baumgartner, W. C. and Reichel, E. 1975. The world water balance. Mean annual global, continental and marine precipitation, Elsevier, Amsterdam
Borin, M., Milani, M., Salvato, M. and Toscano, A., 2011. Evaluation of Phragmites australis (Cav.) Trin. evapotranspiration in northern and southern Italy. Ecol. Engineer. 37. 721–728. https://doi.org/10.1016/j.ecoleng.2010.05.003
Hargreaves, G. H. 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering. 120 (6) 1132–1139. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
Headley, T. R., Davison, L., Huett, D. O. and Müller, R., 2012. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia. Water Res. 4. 345–354. https://doi.org/10.1016/j.watres.2011.10.042
Herbst, M. and Kappen, L. 1999. The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions. Aquat. Bot. 63. 113–125. https://doi.org/10.1016/S0304-3770(98)00112-0
Irmak, S., Kabenge, I., Rudnicka, D., Knezevic, S., Woodward, D. and Moravek, M. 2013. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for common reed, cottonwood and peach-leaf willow in the Platte River Basin, Nebraska-USA. J. Hydrology. 481. 177–190. https://doi.org/10.1016/j.jhydrol.2012.12.032
Monteith, J. L. 1965. Evaporation and Environment. In: The state and movement of water in living organism. 19 th Symp. Soc. Exptl. Biol. 205–234.
Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 193 (1032) 120–145. https://doi.org/10.1098/rspa.1948.0037
Pomogyi, P. 2001. Results of vegetation mapping in Ingó marsh between 1998 and 2000. (In Hungarian) Official Issue of Western Danubian Water Authority, Szombathely
Sun, L and Song, C. 2008. Evapotranspiration from a freshwater marsh in the Sanjiang Plani, Northeast China. J. Hydrology. 352. 202–210. https://doi.org/10.1016/j.jhydrol.2008.01.010
Virág, Á. 1998. Past and Future of Balaton. (In Hungarian) Egri Nyomda Kft., Eger
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Soós Gábor, Anda Angéla

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).