Anyai befektetések hatása az utódokra, különös tekintettel a stressz befolyásoló szerepére madarakban
Irodalmi áttekintés
Kulcsszavak:
maternális stressz, embriófejlődés, szteroid hormonok, madarakAbsztrakt
Madarakban az utódokat segítő, kikelés előtti, anyai hatás vizsgálata alig 15 éves múltra tekint vissza. Az utóbbi másfél évtized egyik fontos biológiai vívmánya volt, hogy a hormonális miliő infraindividuális szintű, fiziológiai vizsgálatából továbblépve, megjelent a különböző hormonok szerepének kutatása a szupraindividuális szintű mintázatok adaptív magyarázatában. A szerzők először áttekintik az emlősöknél régóta vizsgált a vemhesség alatt az anyaállatot ért stressz hatását az in utero fejlődő embrióra, illetve hatását az utód posztnatális fejlődésére. Rövid bepillantást vetnek ennek alakulására halaknál, illetve hüllőknél. Az irodalmi áttekintés főként a tojásszikbe deponált szteroidok szerepét, azok élettani és szupraindividuális magyarázatait taglalja. Részletezi a szikandrogének, a szik 17-béta-ösztradiol és kortikoszteron az embriófejlődésre illetve posztnatálisan az utódfejlődésre gyakorolt hatásait, kitér a stressz tojásméretre gyakorolt hatásaira, valamint a szikbe deponált szteroidok ivararányt befolyásoló hatásaira.
Hivatkozások
Appleby M.C. and Hughes, B.O. (1990): Cages modified with perches and nests for the improvement of bird welfare. World’s Poultry Sci. J., 46(1) 38–40. https://doi.org/10.1079/WPS19900007
Arcos, M. (1972): Steroids in egg yolk. Steroids, 19(1) 25–34. https://doi.org/10.1016/0039-128X(72)90024-4
Bahr, J.M., Wang, S.-C., Huang, M.Y., Calvo, F.O. (1983): Steroid concentrations in isolated theca and granulosa layers of preovulatory follicles during the ovulatory cycle of the domestic hen. Biol.Reprod., 29(2) 326–334. https://doi.org/10.1095/biolreprod29.2.326
Becze J. (1981): A nőivarú állatok szaporodásbiológiája. Mezőgazdasági Kiadó, Budapest, 102–103.
Bell, D.D. (1995): A cage study with laying hens. Proc. of Animal Behavior and the Design of livestock and Poultry Conf. Northeast Regional Agricultural Service, NRAES-84, 307–319.
Bertin A., Richard-Yris M.A., Houdelier C., Lumineau S., Möstl E., Kuchar A., Hirschenhauser K., Kotrschal K. (2008): Habituation to humans affects yolk steroid levels and offspring phenotype in quail. Horm Behav. 54(3) 396–402. https://doi.org/10.1016/j.yhbeh.2008.04.012
Biczó A., Szőke Zs., Péczely P. (2004): Handling stressz és éter-inhaláció hatásai Gyöngyös tojók endokrin és szaporodási paramétereire. In: Összefoglalók, X. Ifjúsági Tudományos Fórum, Keszthely, 2004. április 29. [CD:/Allatelettan_Takarmanyozastan/204.pdf]
Burley, N. (1988): The differential allocation hypothesis: an experimental test. The American Naturalist 132(5) 611–628. https://doi.org/10.1086/284877
Chainy, G.B., Samantaray, S. & Samanta, L. (1997): Testosterone-induced changes in testicular antioxidant system. Andrologia, 29. 343–349. https://doi.org/10.1111/j.1439-0272.1997.tb00328.x
Chichon, M. (1997): Egg weight variation in Collared Flycatcher (Ficedula albicollis). Ornis Fennica 74. 141–147.
Cree, A., Tyrrell, C.L., Preest, M.R., Thorburn, D., Guillette, L.J. Jr (2003): Protecting embryos from stress: corticosterone effects and corticosterone response to capture and confinement during pregnancy in a live-bearing lizard (Hoplodactylus maculatus). Gen. Comp. Endocrinol. 134(3) 316–329. https://doi.org/10.1016/S0016-6480(03)00282-X
Creel, S. (2001): Social dominance and stress hormones. Trends in Ecology&Evolution, 16(9) 491–497. https://doi.org/10.1016/S0169-5347(01)02227-3
Cunningham, E.J.; Russell, A.F. (2000): Egg investment is influenced by male attractiveness in the mallard. Nature 404. 74–77. https://doi.org/10.1038/35003565
Da Silva, J. A. P. (1999): Sex hormones and glucocorticoids: interactions with the immune system. Annuals of the New York Academy of Sciences, 876(1) 102–118. https://doi.org/10.1111/j.1749-6632.1999.tb07628.x
de Fraipont, M., Colbert, J., John-Adler, H. Meylan S. (2000): Increased prenatal corticosterone promotes philopatry of offspring in common lizard (Lacerta vivipara). J. Anim. Ecol., 69(3) 404–431. https://doi.org/10.1046/j.1365-2656.2000.00405.x
DeNardo, D. F. and Sinervo, B. (1994): Effects of Steroid Hormone Interaction on Activity and Home-Range Size of Male Lizards Horm Behav 28(3) 273–287. https://doi.org/10.1006/hbeh.1994.1023
Eising, C., Eikenaar, C., Schwabl, H., Groothuis, T.G.G. (2001): Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc.R. Soc. Lond. 268(1469) 839–846. https://doi.org/10.1098/rspb.2001.1594
Eising, C.M. and Groothuis, T.G.G. (2002): Long-term effects of maternal yolk androgens: an experimental approach. ISBE 2002, Abstracts, 35–36.
Eising, C. M., Müller, W., Dijkstra, C. & Groothuis,T. G. (2003a.): Maternal androgens in egg yolks: relation with sex, incubation time and embryonic growth. Gen. Comp. Endocrinology,132(2) 241–247. https://doi.org/10.1016/S0016-6480(03)00090-X
Eising, C. M., Visser, G. H., Müller, W. & Groothuis,T. G. G. (2003b): Steroids for free? No metabolic costs of elevated maternal androgen levels in the black-headed gull. Journal of Experimental Biology, 206(18) 3211–3218. https://doi.org/10.1242/jeb.00552
Elf, P.K. and Fivizzani, A.J. (2002): Changes in sex steroid levels in yolks of the Leghorn chicken, Gallus domesticus, during embryonic development. J. Exp. Zoology, 293(6) 594–600. https://doi.org/10.1002/jez.10169
Ellis L.A., Borst D.W., Thompson C.F. (2001): Hatching asynchrony and maternal androgens in egg yolks of house wrens. J Avian Biol; 32(1) 26–30. https://doi.org/10.1034/j.1600-048X.2001.320104.x
Eriksen, M.S., Haug, A., Torjesen, P.A., Bakken, M. (2003): Prenatal exposure to corticosterone impairs embryonic develpoment and increases fluctuating asymmetry in chickens (Gallus gallus domesticus). Br. Poult. Sci., 44(5) 690–697. https://doi.org/10.1080/00071660310001643660
Etches, R. (1996): Reproduction in Poultry. CAB International, Wallingford. https://doi.org/10.1079/9780851987385.0000
Faucounau, N., Ichas, F., Stoll, R., Maraud, R. (1995): Action of testosterone on the estradiol-induced feminization of the male chick embryo. Anat. Embryol. 191. 377–379. https://doi.org/10.1007/BF00534691
Ferree, E.D., Wikelski, M.C., Anderson D.J.. (2004): Hormonal correlates of siblicide in Nazca boobies: support for the Challenge Hypothesis. Horm Behav. 46(5) 655–662. https://doi.org/10.1016/j.yhbeh.2004.06.009
Folstad, I. & Karter, A. J. (1992). Parasites, brightmales, and the immunocompetence handicap. American Naturalist, 139(3) 603–622. https://doi.org/10.1086/285346
Forgó V., Afanasiev, G.D., Péczely P. (1988b): Structural and hormonal changes during follicular maturation in the ovary of the domestic goose. Acta Biol Hung. 39(4) 403–17.
Forgó V., Sass M., Péczely P. (1988a): Light microscopic, enzyme biochemical and steroid analytical investigations of follicular atresia in the ovary of domestic goose. Acta Biol Hung. 39(4) 377–401.
French Jr. J.B., Nisbet I.C.T., Schwabl H. (2001): Maternal steroids and contaminants in common tern eggs: a mechanism of endocrine disruption? Comp Biochem Physiol., 128(1) 91–8. https://doi.org/10.1016/S1532-0456(00)00181-2
Galbraith, H. (1988): Effects of egg size and composition on the size, quality and survival of Lapwing Vanellus vanellus chicks. Journal of Zoology (London) 214(3) 383–398. https://doi.org/10.1111/j.1469-7998.1988.tb03747.x
Garamszegi, L.Z., Török J., Tóth, L. Michl, G. (2004) Effect of timing and female quality on clutch size in the Collared Flycatcher Ficedula albicollis. Bird Study, 51(3) 270–277. https://doi.org/10.1080/00063650409461363
Garde, A.H., Hansen, A.M., Skovgaard, L.T., Christensen, .JM. (2000): Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free testosterone in healthy womenClin Chem. 46(4) 551–559. https://doi.org/10.1093/clinchem/46.4.551
Gil D, Graves J., Hazon N., Wells A. (1999): Male attractiveness and differential testosterone investment in zebra finch eggs. Science; 286(5437) 126–128. https://doi.org/10.1126/science.286.5437.126
Gil, D. (2003): Golden eggs: Maternal manipulation of offspring phenotype by androgen in birds. Ardeola 50(2) 281–294.
Gil, D., Leboucher, G., Lacroix, A., Cue, R. and Kreutzer, M. (2004): Female canaries produce eggs with greater amounts of testosterone when exposed to preferred male song. Horm. and Behavior 45(1) 64–70. https://doi.org/10.1016/j.yhbeh.2003.08.005
Gil, D., Ninni, P., Lacroix, A., De Lope, F., Tirard,C., Marzal, A. & Møller, A. P. (2006): Yolk androgens in the barn swallow (Hirundo rustica): a test of adaptive hypotheses. J. Evol Biol. 19(1) 123–131. https://doi.org/10.1111/j.1420-9101.2005.00981.x
Goodson, J.L., Saldanha, C.J., Hahn, T.P., Soma, K.K. (2005): Recent advances in behavioral neuroendocrinology: insights from studies on birds. Horm Behav. 48(4) 461–473. https://doi.org/10.1016/j.yhbeh.2005.04.005
Groothuis, T.G, Müller, W., von Engelhardt, N., Carere1, C., Eising, C. (2005): Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews, 29(2) 329–352. https://doi.org/10.1016/j.neubiorev.2004.12.002
Hackl, R, Bromundt, V., Daisley, J. Kotrschal, K., Möstl, E. (2003): Distribution and origin of steroid hormones in the yolk of Japanese quail (Coturnix japononica japonica) J. of Comp. Physiol. B, 173. 327–331. https://doi.org/10.1007/s00360-003-0339-7
Hargitai, R., Török, J., Tóth, L., Hegyi, G., Rosivall, B., Szigeti, B., Szöllősi, E. (2005): Effects os environmental conditions and parental quality on inter-and intraclutch egg-size variation in collared flycatcher (Ficedula albicollis). Auk, 122(2) 509–522. https://doi.org/10.1093/auk/122.2.509
Haskell, D. (1994): Experimental evidence that nestling begging behaviour incurs a cost due to nest predation. Proc. R Soc London, Series B, 257(1349) 161–164. https://doi.org/10.1098/rspb.1994.0110
Hau, M., Stoddard, S.T., Soma K.K. (2004): Territorial aggression and hormones during the non-breeding season in a tropical bird. Horm Behav. 45(1) 40–49. https://doi.org/10.1016/j.yhbeh.2003.08.002
Hayashi, A., Nagaoka, M., Kazuo, Y., Ichitani, Y., Miake, Y., Okado, N. (1998): Maternal stress induces synaptic loss and developmental disabilities of offspring Int. J. Devl. Neuroscience, 16(3–4) 209–216. https://doi.org/10.1016/S0736-5748(98)00028-8
Hayward, L., Satterlee, D.G., Wingfield, J.C. (2005): Japanese quail selected for high plasma corticosterone response high levels of corticosterone in their eggs. Physiol. Biochem. Zool., 78(6) 1026–1031. https://doi.org/10.1086/432854
Hayward, L.S. and Wingfield, J.C. (2004): Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen. Comp. Endorinol. 135(3) 365–371. https://doi.org/10.1016/j.ygcen.2003.11.002
Hendrix Poultry Breeders Company (2004): Controlling egg size. In: Technical Info Bulletin.
Herrenkohl, L.R. (1979): Prenatal stress reduces fertility and fecundity in female offspring. Science, 206(4422) 1097–1099. https://doi.org/10.1126/science.573923
Hertelendy, F. & Common, R. H. (1965): A chromatographic investigation of egg yolk for the presence of steroid estrogens. Poultry Science, 44(5) 1205–1209. https://doi.org/10.3382/ps.0441205
Hõrak, P., Mänd, R, Ots, I., Leivits, A. (1995): Egg size in the Great Tit Parus major: Individual, habitat and geographic differences.Ornis Fennica 72. 97–114.
Hu Y., Cardounel A., Gursoy E., Anderson P., Kalimi M. (2000) Anti-stress effects of dehydroepiandrosterone: protection of rats against repeated immobilization stress-induced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochem Pharmacol. 59(7) 753–762. https://doi.org/10.1016/S0006-2952(99)00385-8
Huang, E.S.R., Kao, K.J., Nalbandov, AV. (1979): Synthesis of sex steroids by cellular components of chicken follicles. Biol. Reprod., 20(3) 442–453. https://doi.org/10.1095/biolreprod20.3.454
Janczak A.M., Braastad B.O. and Bakken M. (2006): Behavioural effects of embryonic exposure to corticosterone in chickens Applied Animal Behaviour Science, 96(1–2) 69–82. https://doi.org/10.1016/j.applanim.2005.04.020
Järvinen, A. (1991): Proximate factors affecting egg volume in subarctic hole-nesting passerines.Ornis Fennica 68. 99–104.
Kaiser, S., Sachser, N. (2001) Social stress during pregnancy and lactation affects in guinea pigs the male offspring’ endocrine status and infantilizes the behaviour. Psychoneuroendocrinology, 26(5) 503–519. https://doi.org/10.1016/S0306-4530(01)00009-9
Kato, M., Shimada, K., Saito, N., Noda, K. Ohta, M. (1995): Expression of P450 17-α-hydroxylase and P450 aromatase genes in isolated granulosa, theca interna, and theca externa layers of chicken ovarian follicles during follicular growth. Biol. Reprod., 52(2) 405–410. https://doi.org/10.1095/biolreprod52.2.405
Kitaysky, A.S., Wingfield, J.C., Piatt, J.F. (2001): Corticosterone facilitates begging and affects resource allocation in black-legged kittiwake. Behav. Ecol., 12(5) 619–625. https://doi.org/10.1093/beheco/12.5.619
Kofman O. (2002) The role of prenatal stress in the etiology of developmental behavioural disorders Neuroscience and Biobehavioral Reviews 26(4) 457–470. https://doi.org/10.1016/S0149-7634(02)00015-5
Lay Jr., D.C., Wilson, M.E. (2002): Development of the chicken as a model for prenatal stress. J. Anim. Sci. 80(7) 1954–1961. https://doi.org/10.2527/2002.8071954x
Lipar, J.L. (2001): Yolk steroids and the development of the hatching muscle in nestling European Starlings. J. Avian Biol., 32(3) 231–238. https://doi.org/10.1111/j.0908-8857.2001.320305.x
Lipar, J. L. & Ketterson, E. D. (2000): Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proc. Royal Society of London, Series B, 267(1456) 2005–2010. https://doi.org/10.1098/rspb.2000.1242
Lipar J.L., Ketterson E.D., Nolan V. (1999a): Intra-clutch variation in testosterone contents of red-winged blackbirds eggs. Auk, 116(1) 231–235. https://doi.org/10.2307/4089471
Lipar, J.L., Ketterson, E.D, Nolan, V. & Casto, J. M. (1999b): Egg yolk layers vary in the concentration of steroid hormones in two avian species. Gen. Comp. Endocrinol., 115(2) 220–227. https://doi.org/10.1006/gcen.1999.7296
Lou, H.C., Hansen, D., Nordentoft, M., Pryds, O.M., Jensen, F, Nim, J. Hemmingsen, R. (1994): Prenatal stressors of human life affect fetal brain development. Dev. Med. Child. Neurol., 36(9) 826–832. https://doi.org/10.1111/j.1469-8749.1994.tb08192.x
Magrath, P. (1992): Seasonal changes in eggmass within and among clutches of birds: General explanations and a field study of the blackbird Turdus merula. Ibis, 134(2) 171–179. https://doi.org/10.1111/j.1474-919X.1992.tb08394.x
Mazuc J., Chastel O., Sorci G. (2002): No evidence for differential maternal allocation to offspring in the house sparrow (Passer domesticus). Behav Ecol., 14(3) 340–346. https://doi.org/10.1093/beheco/14.3.340
McCormick M.I. (1999): Experimental test of the effect of maternal hormones on larval quality of coral reef fish. Oecologia. 118. 412–422. https://doi.org/10.1007/s004420050743
McIntosh M., Bao H., Lee C. (1999) Opposing actions of dehydroepiandrosterone and corticosterone in rats. Proc Soc Exp Biol Med. 221(3) 198–206. https://doi.org/10.1046/j.1525-1373.1999.d01-77.x
McNabb, F. M. A. & Wilson, C. M. (1997): Thyroid hormone deposition in avian eggs and effects on embryonic development. American Zoologist, 37(6) 553–556. https://doi.org/10.1093/icb/37.6.553
Mesiano S., Katz S.L., Lee J.Y., Jaffe R.B. (1999): Phytoestrogens alter adrenocortical function: genistein and daidzein suppress glucocorticoid and stimulate androgen production by cultured adrenal cortical cells. J Clin Endocrinol Metab. 84(7) 2443–2448. https://doi.org/10.1210/jc.84.7.2443
Meylan, S. and Colbert J. (2005): Is corticosterone-mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Horm. Behav., 48(1) 44–52. https://doi.org/10.1016/j.yhbeh.2004.11.022
Michl G., Török J., Griffith S.C., Sheldon B.C. (2002): Experimental analysis of sperm competition mechanisms in a wild bird population. PNAS, 99(8) 5466–5470. https://doi.org/10.1073/pnas.082036699
Mich.l, G., Török, J., Péczely, P., Garamszegi, L. Schwabl, H. (2004): Female collared flycatchers adjust yolk testosterone to male age, but not to attractiveness. Behavioral Ecology, 16(2) 383–388. https://doi.org/10.1093/beheco/ari002
Morgan M. J., Wilson, C.E., Crim, L.W. (1999): The effect of stress on reproduction in Atlantic cod. J. Fish Biol. 54(3) 477–488. https://doi.org/10.1111/j.1095-8649.1999.tb00629.x
Müller, W., Eising, C. M., Dijkstra, C. & Groothuis,T. G. (2002): Sex differences in yolk hormones depend on maternal social status in Leghorn chickens (Gallus gallus domesticus). Proc. Royal Society of London, Series B, 269(1506) 2249–2255. https://doi.org/10.1098/rspb.2002.2159
Nelson, R. J. (2000): An Introduction to Behavioral Endocrinology. Sinauer. Sunderland.
Nitta, H., Osawa, K., Bahr, JM. (1991): Multiple steroidogenic cells population in theca layer of preovulatory follicles of the chicken ovary. Endocrinology, 129(4) 2033–2040. https://doi.org/10.1210/endo-129-4-2033
Orth, D.N., Kovács, W.J., DeBold, R. (1992): The adrenal cortex. In. Williams Textbook of Endocrinology (J.D. Wilson, D.W. Foster eds) 8th edition, Saunders Co., Philadelphia, London, Toronto, Montreal, Sydney, Tokyo 489–619.
Péczely, P. (1987): A madarak szaporodásbiológiája. Mezőgazda Kiadó, 80–90. old.
Perrins, C.M. (1970): The timing of birds’ breeding seasons. Ibis, 112(2) 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x
Petrie, M. Schwabl, H., Brande-Lavridsen, N., Burke, T. (2001): Sex differences in avian yolk hormone levels, Nature, 412. 498–499. https://doi.org/10.1038/35087652
Petrie, M., Williams, A. (1993): Peahens lay more eggs for peacocks with larger trains. Proc R Soc London, B. 251(1331) 127–131. https://doi.org/10.1098/rspb.1993.0018
Pierotti, R, Bellrose, C.M. (1986): Proximate and ultimate causation of egg size and the “third-chick disadvantage” in the Western Gull. Auk, 103(2) 401–407. https://doi.org/10.1093/auk/103.2.401
Pietz, P.J., Krapu, G.L., Greenwood, R.J. and Lokemoen, J.T. (1993): Effects of harness transmitters on behavior and reproduction on wild mallards. Journal of Wildlife Management, 57(4) 696–703. https://doi.org/10.2307/3809068
Pilz, K.M. (2003): Egg yolk androgens in the European starling (Sturnus vulgaris): Maternal allocation and offspring effects. Doktori értekezés, Cornell University, New York
Pilz, K.M., Smith, H., Sandell, M.I. and Schwabl, H. (2003): Interfemale variation in egg yolk androgen allocation in the European Starling: Do high-quality females invest more? Animal Behaviour, 65(4) 841–850. https://doi.org/10.1006/anbe.2003.2094
Pike T.W, Petrie M. (2005): Offspring sex ratio is related to paternal train elaboration and yolk corticosterone in peafowl. Biol. Lett. 1(2) 204–207. https://doi.org/10.1098/rsbl.2005.0295
Porter, T.E., Hargis, B.M., Silsby, J.L., El Halawani, M.E. (1989): Differential steroid production between theca interna and theca externa cells: a tree-cell model for follicular steroidogenesis in avian species. Endocrinology. 125(1) 109–116. https://doi.org/10.1210/endo-125-1-109
Pottinger, T.G. Carrick T.R. (2000): Indicators of reproductive performance in rainbow trout Oncorhynchus mykiss (Walbaum) selected for high and low responsiveness to stress. Aquac. Res., 31. 367–375. https://doi.org/10.1046/j.1365-2109.2000.00450.x
Razia, S., Maegawa, Y., Tamotsu, S., Oishi, T. (2006): Histological changes in immune and endocrine organs of quail embyos: Exposure to estrogen and nonylphenol. Ecotoxicol and Environ Saf., 65(3) 364–371. https://doi.org/10.1016/j.ecoenv.2005.07.026
Reed W.L, Vleck C.M. (2001): Functional significance of variation in egg-yolk androgens in the American coot. Oecologia; 128. 164–171. https://doi.org/10.1007/s004420100642
Rettenbacher, S., Möstl, E., Hackl, R, Palme, R. (2005): Corticosterone in chicken eggs. Ann.N.Y. Acad. Sci. 1046(1) 193–203. https://doi.org/10.1196/annals.1343.016
Riddle, O. & Dunham, H.H. (1942): Transformation of males to intersexes by estrogen passed from blood of ring doves to their ovarian eggs. Endocrinol. 30. 959–968.
Royle, N. J., Hartley, I. R., Owens, I. P. F. & Parker, G. A. (1999): Sibling competition and the evolution of growth rates in birds. Proc R Soc London, Series B, 266. 923–932. https://doi.org/10.1098/rspb.1999.0725
Rubolini, D., Romano, M., Boncoraglio, G., Ferrari, R.P., Martinelli, R., Galeotti, P., Fasola, M, Saino N. (2005): Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow-legged gull (Larus michahellis) chicks. Horm. Behav., 47(5) 592–605. https://doi.org/10.1016/j.yhbeh.2005.01.006
Rutstein A.N., Gilbert L., Slater P., Graves J. (2005): Sex-specific patterns of yolk androgen allocation depend on maternal diet in the zebra finch. Behav Ecol., 16(1) 62–69. https://doi.org/10.1093/beheco/arh123
Saino, N., Romano, M., Ferrari, RP., Martinelli, R., Møller, A. P. (2005): Stressed mothers lay eggs with high corticosterone which produce low-quality offspring. J. Exp. Zoology A Comp Exp Biol., 303(11) 998–1006. https://doi.org/10.1002/jez.a.224
Saino, N., Suffritti, C., Martinelli, R., Rubolini,D. & Møller, A. P. (2003): Immune response covaries with corticosterone plasma levels under experimentally stressful conditions in nestling barn swallows (Hirundo rustica). Behavioral Ecology, 14(3) 318–325. https://doi.org/10.1093/beheco/14.3.318
Salvante K.G., Williams T.D. (1993): Effects of corticosterone on the proportion of breeding females, reproductive output and yolk precursor levels. Gen Comp Endocrinol, 130(3) 205–214. https://doi.org/10.1016/S0016-6480(02)00637-8
Sasvári, L., Hegyi, Z., Péczely, P. (1999): Brood reduction in white storks mediated through assymetries in plasma testosterone concentrations in chicks, Ethology, 105(7) 569–582. https://doi.org/10.1046/j.1439-0310.1999.00439.x
Sasvári, L., Hegyi, Z., Péczely, P. (2001): Reply to Ros, Hirschenhauser and Oliviera. Ethology, 107(9) 854–856. https://doi.org/10.1046/j.1439-0310.2001.00721.x
Schwabl, H. (1993): Yolk is a source of maternal testosterone for developing birds. Proc. Natl. Acad. Sci. Vol., 90(24) 11446–11450. https://doi.org/10.1073/pnas.90.24.11446
Schwabl H. (1996) Maternal testosterone in the avian egg enhances postnatal growth. Comp Biochem Physiol A 114(3) 271–276. https://doi.org/10.1016/0300-9629(96)00009-6
Schwabl, H. (1997): Maternal steroid hormones in the egg. In: S. Harvey & R. J. Etches (Eds): Perspectives in Avian Endocrinology, pp. 3–13. Journal of Endocrinology. Bristol.
Schwabl H., Mock D.W., Gieg J.A. (1997): A hormonal mechanism for parental favouritism. Nature; 386. 231. https://doi.org/10.1038/386231a0
Smith, H.G, Ottoson, U., Ohlson, T. (1993): Interclutch variation in egg mass among Starlings Sturnus vulgaris reflects female condition. Ornis Scandinavica 24(4) 311–316. https://doi.org/10.2307/3676793
Sockman, K. W. & Schwabl, H. (2000): Yolk androgens reduce offspring survival. Proceedings of theRoyal Society of London, Series B, 267 1451–1456. https://doi.org/10.1098/rspb.2000.1163
Sockman, K. W. & Schwabl, H. (2001): Plasma corticosterone in nestling American kestrels: Effects of age, handling stress, yolk androgens, and body condition. Gen. Comp. Endocr, 122(2) 205–212. https://doi.org/10.1006/gcen.2001.7626
Soma, K.K., Alday, N.A., Hau, M., Schlinger B.A. (2004): Dehydroepiandrosterone metabolism by 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in adult zebra finch brain: sex difference and rapid effect of stress. Endocrinology. 145(4) 1668–1677. https://doi.org/10.1210/en.2003-0883
Strasser, R., Schawbl, H. (2000): Organizational effects of yolk testosterone in the house sparrow Society for Neuroscience Abstracts 26(1–2) No.115. 5.
Szőke, Zs., Biczó, A., Barna, J. Péczely, P. (2005): Szteroidhormonok tojásszikbõl történõ meghatározása, mint a stresszhatások és az “anyai befektetés” diagnosztikai lehetősége madarakban. Proc. “Vadállatok szaporodásbiológiája, állatkerti tenyészprogramok” konferencia, Budapest, 2005. Márc. 18–20.
Szőke, Zs., Ferenczi, Sz., Biczó, A., Péczely, P. (2004): A tojót ért stressz hatása a tojásszikbe deponált szteroidokra és utódaira. Állattenyésztés és Takarmányozás 54(3) 255–264.
Szőke, Zs., Végi, B., Varga, Á., Lennert, L., Péczely, P. and Barna, J. (2006) Effects of artificial insemination as a handling stress on egg weight, yolk corticosterone content and embryonic mortality (Pilot study) In: New insights into fundamental physiology and perinatal adaptation of domestic fowl. Eds: S Yahav and B. Tzscheentke. Nottingham University Press. pp. 189–197.
Takahashi, L.K. (1998): Prenatal stress: Consequences of glucocorticoids on hippocampal development and function Int. J. Devl. Neuroscience, 16(3–4) 199–207. https://doi.org/10.1016/S0736-5748(98)00020-3
Tilly, J.L., Johnson, A.L. (1990): Modulation of hen granulosa cell steroidogenesis and plasminogen activator-activity by transforming growth factor alpha. Growth Factors, 3(3) 246–255. https://doi.org/10.3109/08977199009043909
Tschirren B., Richner H., Schwabl H. (2004): Ectoparasite-modulated deposition of maternal androgens in great tit eggs. Proc R Soc Lond B. 271(1546) 1370–1375. https://doi.org/10.1098/rspb.2004.2730
Tsutsui, K., Ukena, K., Takase, M., Kohchi, C., Lea, R.W. (1999): Neurosteroid biosynthesis in vertebrate brains. Comp. Biochem. Physiol. C. Pharmacol. Toxicol Endocrinol, 124(2) 121–129. https://doi.org/10.1016/S0742-8413(99)00065-1
Ukena, K., Matsumaga, M, Tsutsui, K. (2000): Neurosteroidogenesis in the avian brain. Abstract VII. Intern. Symp. Avian Endocrinology, Varanasi, 11.04.O.
Van den Bergh, B., Mulder, E.J.H., Mennes, M., Glover, V. (2005): Antenatal maternal anxiety and stress and neurobehavioural development of the fetus and child: links and possible mechanism. A review Neuroscience and Biobehavioral Reviews, 29(2) 237–258. https://doi.org/10.1016/j.neubiorev.2004.10.007
Von Engelhardt, N., Dijkstra, C., Daan, S., Groothuis T.G.G. (2004): Effects of 17-βestradiol treatment of female zebra finches on offspring sex ratio and survival. Horm. Behav., 45(5) 306–313. https://doi.org/10.1016/j.yhbeh.2003.12.009
Wadhwa, P.D:, Sandman, C.A., Porto, M., Dunkel-Schetter, C. Garite, T.J. (1993): The association between the prenatal stress and infant birth weight and gestational age at birth: a prospective study. Am. J. Obstet. Gynecol., 169(4) 858–865. https://doi.org/10.1016/0002-9378(93)90016-C
Ward I.L. (1972): Prenatal stress feminizes and demasculinizes the behavior of males. Science, 175(4017) 82–84. https://doi.org/10.1126/science.175.4017.82
Ward B.C, Nordeen E.J, Nordeen K.W. (2001): Anatomical and ontogenetic factors producing variation in HVc neuron number in zebra finches. Brain Res., 904(2) 318–26. https://doi.org/10.1016/S0006-8993(01)02488-X
Weinstock, M. (2001): Alterations induced by gestational stress in brain morphology and behaviour of the offspring Progress in Neurobiology, 65(5) 427–451. https://doi.org/10.1016/S0301-0082(01)00018-1
Weinstock, M, Poltyrev, T, Schorer-Apelbaum, D. Men, D. McCarty R. (1998): Effect of Prenatal Stress on Plasma Corticosterone and Catecholamines in Response to Footshock in Rats Physiology&Behavior, 64(4) 439–444. https://doi.org/10.1016/S0031-9384(98)00056-0
Whittingham, L.A., Dunn, P.O. (2000): Offspring sex ratios in tree swallows: females in better condition produce more sons. Mol. Ecol., 9(8) 1123–1129. https://doi.org/10.1046/j.1365-294x.2000.00980.x
Whittingham, L.A., Schwabl, H. (2002): Maternal testosterone in tree swallow eggs varies with female aggression. Animal Behaviour, 63(1) 63–67. https://doi.org/10.1006/anbe.2001.1889
Williams, T.D. (1999): Parental and first generation effects of exogenous 17-beta-estradiol on reproductive performance of zebra finches (Taeniopygia guttata). Horm. Behav., 35(2) 135–143. https://doi.org/10.1006/hbeh.1998.1506
Williams, T.D., Reed, W.L. and Walzen, R.L. (2001): Egg size variation: mechanisms and hormonal control. In A. Dawson& CM. Chaturvedi (eds.) Avian Endocrinology pp. 205–217.
Young, R.L., Badyaev, A.V. (2004): Evolution of sex-biased maternal effects in birds: 1. Sex-specific resource allocation among simultaneously growing oocytes. J. Evol. Biol., 17(6) 1355–1366. https://doi.org/10.1111/j.1420-9101.2004.00762.x
Zarrow, M.X., Greenman, D.L., Peters, L.E. (1961): Inhibition of the bursa of the Fabricius and stilbestrol stimulated oviduct of the domestic chick. Poultry Sci., 40(1) 87–93. https://doi.org/10.3382/ps.0400087
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2009 Szőke Zsuzsanna, Péczely Péter, Barna Judit

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.