Assessment of the role of herbaceous plants in ecosystem services

Authors

  • Judit Doma-Tarcsányi MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0000-0003-3002-0283 (unauthenticated)
  • Orsolya Bagdiné Fekete MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design
  • Eszter Karlócainé Bakay MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0000-0002-3567-5222
  • Krisztina Szabó MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék , MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design https://orcid.org/0000-0002-3233-0974

DOI:

https://doi.org/10.36249/4d.77.6267

Keywords:

ecosystem services, urban green space, perennial plantings, biodiversity

Abstract

Nature can contribute to human well-being in many ways, positively affecting not only our physical health but also our mental health. Urban green spaces and their vegetation make a significant contribution to improving the quality of the urban environment, in particular by reducing the effects of climate change, sequestering pollutants mitigating the urban heat island effect. In addition to mitigating the negative impacts of human activity, they play an important role in enhancing the aesthetic quality of the urban environment and the identity and character of the place. Plants, through the ecosystem services they provide (ES), are therefore essential for improving the resilience of cities, the quality of life of their inhabitants their attachment to place. The concept and system of ES has become an increasingly widely used and emphasized concept over the last few decades. There is a large body of literature available on the services provided by plants, with particular emphasis on trees. But herbaceous plants are usually less emphasized, which is the focus in this research, their role being somewhat underestimated due to their smaller size, leaf mass, and shorter life span . Based on a review of the relevant literature, this research investigates the functions that herbaceous plants can play in urban green space ecosystems and the services they can provide to the people living in their surroundings. Our goal is to ensure that when designing urban herbaceous surfaces, the maximisation of context-appropriate ES should be included and emphasised in the plant selection criteria.

Author Biographies

  • Judit Doma-Tarcsányi, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    e-mail: doma-tarcsanyi.judit@uni-mate.hu

  • Orsolya Bagdiné Fekete, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    assistant professor
    email: bagdine.fekete.orsolya@uni-mate.hu

  • Eszter Karlócainé Bakay, MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    e-mail: karlocaine.bakay.eszter@uni-mate.hu

  • Krisztina Szabó , MATE, Tájépítészeti, Településtervezési és Díszkertészeti Intézet, Budapest, Kert- és Szabadtértervezési Tanszék, MATE, Institute of Landscape Architecture, Urban Planning and Garden Art, Budapest, Department of Garden and Open Space Design

    associate professor 
    e-mail: szabo.krisztina.dendro@uni-mate.hu

References

[1] C. Dye, Health and Urban Living, Science (New York, N.Y.) 319 (2008) 766–9. https://doi.org/10.1126/science.1150198.

[2] E. Gómez-Baggethun, D. Barton, Classifying and valuing ecosystem services for urban planning, Ecological Economics 86 (2013) 235–245. https://doi.org/10.1016/j.ecolecon.2012.08.019.

[3] E. Gómez-Baggethun, Å. Gren, D. Barton, J. Langemeyer, T. McPhearson, P. O’Farrell, Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment, in: 2013.

[4] L. Miedema Brown, M. Anand, Plant functional traits as measures of ecosystem service provision, Ecosphere 13 (2022) e3930. https://doi.org/10.1002/ecs2.3930.

[5] N. Pérez-Harguindeguy, S. Diaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. Bret-Harte, W. Cornwell, J. Craine, D. Gurvich, C. Urcelay, E. Veneklaas, P. Reich, L. Poorter, I. Wright, P. Ray, L. Enrico, J. Pausas, A. Vos, J. Cornelissen, Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide, Australian Journal of Botany 64 (2016) 715. https://doi.org/10.1071/BT12225_CO.

[6] F. Bello, S. Lavorel, S. Diaz, R. Harrington, J. Cornelissen, R. Bardgett, M. Berg, P. Cipriotti, C. Feld, D. Hering, P. Silva, S. Potts, L. Sandin, J.P. Sousa, J. Storkey, D. Wardle, P. Harrison, Towards an assessment of multiple ecosystem processes and services via functional traits, Biodiversity and Conservation 19 (2010). https://doi.org/10.1007/s10531-010-9850-9.

[7] R. Haines-Young, M. Potschin, Guidance on the Application of the Revised Structure, (n.d.).

[8] A. Kovács-Hostyánszki, L. Kisné Fodor, Z. Zsembery, E. Tanács, Hazai ökoszisztéma-szolgáltatások értékelése és térképezése, Agrárminisztérium (1055 Budapest, Kossuth Lajos tér 11.), Budapest, 2022.

[9] P. Bolund, S. Hunhammar, Ecosystem services in urban areas, Ecological Economics 29 (1999) 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0.

[10] S. Demasi, M. Caser, D. Donno, S. Ravetto Enri, M. Lonati, V. Scariot, Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture, Folia Horticulturae 33 (2021) 000010247820210004. https://doi.org/10.2478/fhort-2021-0004.

[11] A. Durazzo, M. Lucarini, E. Novellino, P. Daliu, A. Santini, Fruit-based juices: Focus on antioxidant properties-Study approach and update, Phytother Res 33 (2019) 1754–1769. https://doi.org/10.1002/ptr.6380.

[12] M. Kapoor, Managing Ambient Air Quality Using Ornamental Plants-An Alternative Approach, Universal Journal of Plant Science 5 (2017) 1–9. https://doi.org/10.13189/ujps.2017.050101.

[13] A. Dimoudi, M. Nikolopoulou, Vegetation in the urban environment: microclimatic analysis and benefits, Energy and Buildings 35 (2003) 69–76. https://doi.org/10.1016/S0378-7788(02)00081-6.

[14] C. Wang, Z.-H. Wang, J. Yang, Cooling Effect of Urban Trees on the Built Environment of Contiguous United States, Earth’s Future 6 (2018) 1066–1081. https://doi.org/10.1029/2018EF000891.

[15] A. Francini, D. Romano, S. Toscano, A. Ferrante, The Contribution of Ornamental Plants to Urban Ecosystem Services, Earth 3 (2022) 1258–1274. https://doi.org/10.3390/earth3040071.

[16] J. Yuan, N. Dunnett, Plant selection for rain gardens: Response to simulated cyclical flooding of 15 perennial species, Urban Forestry & Urban Greening 35 (2018). https://doi.org/10.1016/j.ufug.2018.08.005.

[17] S. Nur Hannah Ismail, V. Stovin, R.W.F. Cameron, Functional urban ground-cover plants: identifying traits that promote rainwater retention and dissipation, Urban Ecosyst 26 (2023) 1709–1724. https://doi.org/10.1007/s11252-023-01417-w.

[18] S. Kemp, P. Hadley, T. Blanuša, The influence of plant type on green roof rainfall retention, Urban Ecosyst 22 (2019) 355–366. https://doi.org/10.1007/s11252-018-0822-2.

[19] J. Lundholm, J.S. MacIvor, Z. MacDougall, M. Ranalli, Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions, PLOS ONE 5 (2010) e9677. https://doi.org/10.1371/journal.pone.0009677.

[20] A. Nagase, N. Dunnett, Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure, Landscape and Urban Planning 104 (2012) 356–363. https://doi.org/10.1016/j.landurbplan.2011.11.001.

[21] F. Gilliam, The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems, Bioscience 57 (2007). https://doi.org/10.1641/B571007.

[22] R.N. Muller, Nutrient Relations of the Herbaceous Layer in Deciduous Forest Ecosystems, in: F.S. Gilliam, M.R. Roberts (Eds.), The Herbaceous Layer in Forests of Eastern North America, Oxford University Press, 2003: p. 0. https://doi.org/10.1093/oso/9780195140880.003.0002.

[23] D.F. Whigham, Ecology of Woodland Herbs in Temperate Deciduous Forests, Annual Review of Ecology, Evolution, and Systematics 3 (2004) 583–621.

[24] M.S. Thilakarathna, M.S. McElroy, T. Chapagain, Y.A. Papadopoulos, M.N. Raizada, Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review, Agron. Sustain. Dev. 36 (2016) 58. https://doi.org/10.1007/s13593-016-0396-4.

[25] K. Pirhofer-Walzl, J. Rasmussen, H. Høgh-Jensen, J. Eriksen, K. Søegaard, J. Rasmussen, Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland, Plant Soil 350 (2012) 71–84. https://doi.org/10.1007/s11104-011-0882-z.

[26] L. Kervroëdan, R. Armand, M. Saunier, J.-F. Ouvry, M.-P. Faucon, Plant functional trait effects on runoff to design herbaceous hedges for soil erosion control, Ecological Engineering 118 (2018). https://doi.org/10.1016/j.ecoleng.2018.04.024.

[27] M. Fattet, Y. Fu, M. Ghestem, W. Ma, M. Foulonneau, J. Nespoulous, Y. Le Bissonnais, A. Stokes, Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength, CATENA 87 (2011) 60–69. https://doi.org/10.1016/j.catena.2011.05.006.

[28] A. Francini, S. Toscano, D. Romano, F. Ferrini, A. Ferrante, Biological Contribution of Ornamental Plants for Improving Slope Stability along Urban and Suburban Areas, Horticulturae 7 (2021) 310. https://doi.org/10.3390/horticulturae7090310.

[29] F. Weber, I. Kowarik, I. Säumel, Herbaceous plants as filters: Immobilization of particulates along urban street corridors, Environmental Pollution 186 (2014) 234–240. https://doi.org/10.1016/j.envpol.2013.12.011.

[30] C. Li, D. Du, Y. Gan, S. Ji, L. Wang, M. Chang, J. Liu, Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas, Chemosphere 287 (2022) 132341. https://doi.org/10.1016/j.chemosphere.2021.132341.

[31] A. Przybysz, R. Popek, M. Stankiewicz-Kosyl, Ch.Y. Zhu, M. Małecka-Przybysz, T. Maulidyawati, K. Mikowska, D. Deluga, K. Griżuk, J. Sokalski-Wieczorek, K. Wolszczak, M. Wińska-Krysiak, Where trees cannot grow – Particulate matter accumulation by urban meadows, Science of The Total Environment 785 (2021) 147310. https://doi.org/10.1016/j.scitotenv.2021.147310.

[32] W. Kong, T. Wang, H. Li, L. Wang, Q. Guo, X. Guo, Leaf micromorphology affects the particulate matter retention in herbaceous plants: An in situ interspecies comparison, CLEAN – Soil, Air, Water 51 (2023) 2200289. https://doi.org/10.1002/clen.202200289.

[33] A. Przybysz, A. Sæbø, H.M. Hanslin, S.W. Gawroński, Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time, Science of The Total Environment 481 (2014) 360–369. https://doi.org/10.1016/j.scitotenv.2014.02.072.

[34] L. Chen, C. Liu, L. Zhang, R. Zou, Z. Zhang, Variation in Tree Species Ability to Capture and Retain Airborne Fine Particulate Matter (PM2.5), Sci Rep 7 (2017) 3206. https://doi.org/10.1038/s41598-017-03360-1.

[35] Z. Chiam, X.P. Song, H.R. Lai, H.T.W. Tan, Particulate matter mitigation via plants: Understanding complex relationships with leaf traits, Science of The Total Environment 688 (2019) 398–408. https://doi.org/10.1016/j.scitotenv.2019.06.263.

[36] U. Weerakkody, J.W. Dover, P. Mitchell, K. Reiling, Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves, Urban Forestry & Urban Greening 30 (2018) 98–107. https://doi.org/10.1016/j.ufug.2018.01.001.

[37] U. Weerakkody, J.W. Dover, P. Mitchell, K. Reiling, Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics, Science of The Total Environment 635 (2018) 1012–1024. https://doi.org/10.1016/j.scitotenv.2018.04.106.

[38] M. Tomson, P. Kumar, K.V. Abhijith, J.F. Watts, Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species, Science of The Total Environment 921 (2024) 170950. https://doi.org/10.1016/j.scitotenv.2024.170950.

[39] S. Pradhan, J. Conrad, J.R. Paterek, V. Srivastava, Potential of Phytoremediation for Treatment of PAHs in Soil at MGP Sites, Journal of Soil Contamination - J SOIL CONTAM 7 (1998) 467–480. https://doi.org/10.1080/10588339891334401.

[40] S. Datta, S. Chatterjee, A. Mitra, V. Veer, Phytoremediation Protocols: An Overview, in: 2013: pp. 1–18. https://doi.org/10.1007/978-3-642-35564-6_1.

[41] G.M. Gáspár, A. Anton, Toxikuselem-szennyeződés káros hatásainak mérséklése fitoremediációval, (2005). https://doi.org/10.1556/agrokem.53.2004.3-4.15.

[42] M. Capuana, A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas, iForest 13 (2020) 139–151. https://doi.org/10.3832/ifor3242-013.

[43] Phytoremediation | Stevie Famulari, Gds, (n.d.). https://www.steviefamulari.net/phytoremediation/ (accessed July 31, 2024).

[44] A. Bani, NICKEL HYPERACCUMULATION IN THE SERPENTINE FLORA OF ALBANIA, (2013). https://www.academia.edu/7031211/NICKEL_HYPERACCUMULATION_IN_THE_SERPENTINE_FLORA_OF_ALBANIA (accessed July 31, 2024).

[45] J. Chen, Z. Yang, Y. Su, F. Han, D.L. Monts, Phytoremediation of heavy metal/metalloid-contaminated soils, Contaminated Soils: Environmental Impact, Disposal and Treatment (2011) 181–206.

[46] R.V. Khandare, A.N. Kabra, D.P. Tamboli, S.P. Govindwar, The role of Aster amellus Linn. in the degradation of a sulfonated azo dye Remazol Red: A phytoremediation strategy, Chemosphere 82 (2011) 1147–1154. https://doi.org/10.1016/j.chemosphere.2010.12.073.

[47] R. Liu, R. Jadeja, Q. Zhou, Z. Liu, Treatment and Remediation of Petroleum-Contaminated Soils Using Selective Ornamental Plants, Environmental Engineering Science 29 (2012) 494–501. https://doi.org/10.1089/ees.2010.0490.

[48] A. Cao, G. Cappai, A. Carucci, A. Muntoni, Selection of Plants for Zinc and Lead Phytoremediation, Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 39 (2004) 1011–24. https://doi.org/10.1081/ESE-120028410.

[49] s. M.O. Babu, M.B. Hossain, P. Rahman C.S.O., M. Rahman, A.S.S. Ahmed, M.M. Hasan, A. Rakib, T. Emran, J. Xiao, J. Simal-Gandara, Phytoremediation of Toxic Metals: A Sustainable Green Solution for Clean Environment, Applied Sciences 11 (2021) 10348. https://doi.org/10.3390/app112110348.

[50] O.A. Emashogwe, I.A. Kesiye, G. Jackson, U. Isaac, Assessment of the phytoremediation capabilities of bracken fern (Pteridium aquilinum) for the remediation of heavy metals (Pb, Ni and Cd) contaminated water, Afr. J. Environ. Sci. Technol. (n.d.).

[51] C. Caldelas, J. Araus, A. Febrero, J. Bort, Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L, Acta Physiologiae Plantarum 34 (2005) 1217–1228. https://doi.org/10.1007/s11738-012-0956-4.

[52] E.A.H. Pilon-Smits, M.P. de Souza, G. Hong, A. Amini, R.C. Bravo, S.T. Payabyab, N. Terry, Selenium Volatilization and Accumulation by Twenty Aquatic Plant Species, Journal of Environmental Quality 28 (1999) 1011–1018. https://doi.org/10.2134/jeq1999.00472425002800030035x.

[53] M. Bosiacki, E. Wojciechowska, Phytoextraction of Nickel by Selected Ornamental Plants, Ecological Chemistry and Engineering S 19 (2012). https://doi.org/10.2478/v10216-011-0024-9.

[54] S. Cay, Enhancement of cadmium uptake by Amaranthus caudatus, an ornamental plant, using tea saponin, Environmental Monitoring and Assessment 188 (2016). https://doi.org/10.1007/s10661-016-5334-z.

[55] S. Goswami, S. Das, Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance, Ecotoxicology and Environmental Safety 126 (2016) 211–218. https://doi.org/10.1016/j.ecoenv.2015.12.030.

[56] S. Ramana, A. Biswas, A.B. Singh, A. Kumar, N. Ahirwar, A. Rao, Phytoremediation ability of some floricultural plant species, Indian Journal of Plant Physiology 18 (2013) 187–190. https://doi.org/10.1007/s40502-013-0029-8.

[57] W. Khan, S. Ahmad, N. Yasin, A. Ali, A. Ahmad, Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pbcontaminated soils, International Journal of Phytoremediation 19 (2016) 514–521.

[58] N.F. Abdul Rashid, N. Qistina, THE POTENTIAL OF Catharanthus Roseus AS A PHYTOREMEDIATION AGENT FOR HEAVY METAL REMOVAL IN CONTAMINATED SOIL, International Journal of Innovation and Industrial Revolution 6 (2024) 142–153. https://doi.org/10.35631/IJIREV.617011.

[59] N. Ehsan, R. Nawaz, S. Ahmad, M. Khan, J. Hayat, Phytoremediation of Chromium-Contaminated Soil by an Ornamental Plant, Vinca (Vinca rosea L.), Journal of Environmental and Agricultural Sciences 2313-8629 07 (2016) 29–34.

[60] R. Anyasi, H. Atagana, Profiling of plants at petroleum contaminated site for phytoremediation, International Journal of Phytoremediation 20 (2018) 352–361. https://doi.org/10.1080/15226514.2017.1393386.

[61] A. Signes Pastor, S. Munera, F. Burló, M. Cano-Lamadrid, A. Carbonell-Barrachina, Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta, Environmental Monitoring and Assessment 187 (2015) 4618. https://doi.org/10.1007/s10661-015-4618-z.

[62] H. Aggarwal, D. Goyal, Chapter 5 Phytoremediation of some heavy metals by agronomic crops, in: D. Sarkar, R. Datta, R. Hannigan (Eds.), Developments in Environmental Science, Elsevier, 2007: pp. 79–98. https://doi.org/10.1016/S1474-8177(07)05005-X.

[63] J. Forte, S. Mutiti, Phytoremediation Potential of Helianthus annuus and Hydrangea paniculata in Copper and Lead-Contaminated Soil, Water, Air, & Soil Pollution 228 (2017). https://doi.org/10.1007/s11270-017-3249-0.

[64] M. Bosiacki, Accumulation of cadmium in selected species of ornamental plants, Acta Scientiarum Polonorum, Hortorum Cultus 7 (2008).

[65] S. Reed, T. Ayala, C. Dunn, G. Gordon, A. Meerow, Screening Ornamentals for Their Potential as As Accumulator Plants, Journal of Agricultural Science 5 (2013). https://doi.org/10.5539/jas.v5n10p20.

[66] Q. Miao, J. Yan, Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge, Journal of Material Cycles and Waste Management 15 (2012). https://doi.org/10.1007/s10163-012-0095-4.

[67] Z. Cai, Q. Zhou, S. Peng, K. Li, Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance, J Hazard Mater 183 (2010) 731–737. https://doi.org/10.1016/j.jhazmat.2010.07.087.

[68] S. Pandey, T. Bhattacharya, S. Chakraborty, Metal Phytoremediation Potential of Naturally Growing Plants on Fly Ash Dumpsite of PatratuThermal Power Station, Jharkhand, India, International Journal of Phytoremediation 18 (2015). https://doi.org/10.1080/15226514.2015.1064353.

[69] Y. Sun, Q. Zhou, Uptake and translocation of benzo[a]pyrene (B[a]P) in two ornamental plants and dissipation in soil, Ecotoxicol Environ Saf 124 (2016) 74–81. https://doi.org/10.1016/j.ecoenv.2015.09.037.

[70] V. Kuppusamy, J. Arockiaraj, S. Kamalakannan, Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments, International Journal of Phytoremediation 19 (2016). https://doi.org/10.1080/15226514.2016.1267699.

[71] K. Wang, H. Huang, Z. Zhu, T. Li, Z. He, X. Yang, A. Kumar, Phytoextraction of Metals and Rhizoremediation of PAHs in Co-Contaminated Soil by Co-Planting of Sedum Alfredii with Ryegrass ( Lolium Perenne ) or Castor ( Ricinus Communis ), Int J Phytoremediation 15 (2013) 283–98. https://doi.org/10.1080/15226514.2012.694501.

[72] H. Zhang, X. Chen, C. He, X. Liang, K. Oh, X. Liu, Y. Lei, Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid, International Journal of Phytoremediation 17 (2015) 632–9. https://doi.org/10.1080/15226514.2014.935287.

[73] G. Huang, G. Guo, S. Yao, N. Zhang, H. Hu, Organic Acids, Amino Acids Compositions in the Root Exudates and Cu-accumulation in Castor ( Ricinus communis L. ) under Cu Stress, International Journal of Phytoremediation 18 (2015). https://doi.org/10.1080/15226514.2015.1058333.

[74] M.A. Chhajro, M.S. Rizwan, H. Guoyong, Z. Jun, K.A. Kubar, H. Hongqing, Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators, Int J Phytoremediation 18 (2016) 664–670. https://doi.org/10.1080/15226514.2015.1115965.

[75] D. Mónok, L. Kardos, Az orvosi körömvirág (Calendula officinalis L.) és a nagy bársonyvirág (Tagetes erecta L.) fitoremediációs potenciáljának értékelése nehézfémmel szennyezett talajokon, (2019).

[76] N. Ehsan, Remediation of Heavy Metal-contaminated Soil by Ornamental Plant Zinnia (Zinnia elegance L.), Asian Journal of Chemistry 28 (2016) 1338–1342.

[77] J. Ciura, M. Poniedziałek, A. Sękara, E. Jędrszczyk, The Possibility of Using Crops as Metal Phytoremediants, Polish Journal of Environmental Studies 14 (2005) 17–22.

[78] S. Ebbs, M. Lasat, D. Brady, J. Cornish, R. Gordon, L. Kochian, Phytoextraction of Cadmium and Zinc from a Contaminated Soil, Journal of Environmental Quality 26 (1997) 1424–1430. https://doi.org/10.2134/jeq1997.00472425002600050032x.

[79] Q.-R. Wang, X.-M. Liu, Y.-S. Cui, Y.-T. Dong, P. Christie, RESPONSES OF LEGUME AND NON-LEGUME CROP SPECIES TO HEAVY METALS IN SOILS WITH MULTIPLE METAL CONTAMINATION, Journal of Environmental Science and Health, Part A 37 (2002) 611–621. https://doi.org/10.1081/ESE-120003241.

[80] G.S. Bañuelos, H.A. Ajwa, B. Mackey, L. Wu, C. Cook, S. Akohoue, S. Zambruzuski, Evaluation of Different Plant Species Used for Phytoremediation of High Soil Selenium, Journal of Environmental Quality 26 (1997) 639–646. https://doi.org/10.2134/jeq1997.00472425002600030008x.

[81] J.R. Peralta-Videa, J.L. Gardea-Torresdey, E. Gomez, K.J. Tiemann, J.G. Parsons, G. Carrillo, Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake, Environmental Pollution 119 (2002) 291–301. https://doi.org/10.1016/S0269-7491(02)00105-7.

[82] M.L. López, J.R. Peralta-Videa, T. Benitez, J.L. Gardea-Torresdey, Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter, Chemosphere 61 (2005) 595–598. https://doi.org/10.1016/j.chemosphere.2005.02.028.

[83] J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, M.J. Yacaman, Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants, Nano Letters 2 (2002) 397.

[84] A. Hector, R. Bagchi, Biodiversity and ecosystem multifunctionality, Nature 448 (2007).

[85] P. Balvanera, A. Pfisterer, N. Buchmann, J.-S. He, T. Nakashizuka, D. Raffaelli, B. Schmid, Quantifying the evidence for biodiversity effects on ecosystem functioning and services, Ecology Letters 9 (2006) 1146–56. https://doi.org/10.1111/j.1461-0248.2006.00963.x.

[86] S. Quijas, B. Schmid, P. Balvanera, Plant diversity enhances provision of ecosystem services: A new synthesis, Basic and Applied Ecology 11 (2010) 582–593. https://doi.org/10.1016/j.baae.2010.06.009.

[87] D. Hooper, F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. Symstad, V. J.J., D. Wardle, Effects Of Biodiversity On Ecosystem Functioning: A Consensus Of Current Knowledge, Ecological Monographs 75 (2005) 3–35. https://doi.org/10.1890/04-0922.

[88] F. Santamour, TREES FOR URBAN PLANTING : DIVERSITY UNIFORMITY , AND COMMON SENSE, in: 1999. https://www.semanticscholar.org/paper/TREES-FOR-URBAN-PLANTING-%3A-DIVERSITY-UNIFORMITY-%2C-Santamour/26a24c5361ce6d6e618a9fa307c4a34a3169e309 (accessed July 30, 2024).

[89] R. Ulrich, Natural Versus Urban Scenes: Some Psychophysiological Effects, Environment and Behavior 13 (1981) 523–556. https://doi.org/10.1177/0013916581135001.

Downloads

Published

2025-09-15

Issue

Section

Articles

How to Cite

Doma-Tarcsányi, J., Bagdiné Fekete, O., Karlócainé Bakay, E., & Szabó , K. (2025). Assessment of the role of herbaceous plants in ecosystem services. 4D Journal of Landscape Architecture and Garden Art, 77, 22-45. https://doi.org/10.36249/4d.77.6267

Most read articles by the same author(s)

1 2 > >>