Aspects of assessment of ecological impact of an ash-sludge collector of pavlodar aluminum plant (Kazakhstan)
DOI:
https://doi.org/10.56617/tl.3464Palavras-chave:
neural network, waste, ash-sludge collector, elemental analysis, Levenberg-Marquardt algorithmResumo
On the base of samples taken from ash-sludge collector of Pavlodar Aluminum Plant we have created neural network for making forecasts of concentration distributions of different elements compounding production waste of the plant. For every analyzed element separate neural network was created. Levenberg-Marquardt algorithm was chosen for training. Architecture of neural network includes 5 layers, where one layer is input, one – output and three between them are hidden layers. Neural network demonstrates high accuracy on all of three samples of data obtained by means of partitioning of samples taken from different locations of the lake. Much higher concentration in every location is observed for Silicon (Si), Calcium (Ca), Cuprum (Cu) and Ferrum (Fe). The less concentrations were obtained for Manganese (Mn), Vanadium (V), Titanium (Ti), Scandium (Sc), Gallium (Ga). Accuracy of neural network calculations depends on setting parameters such as number of layers, training algorithm.
Referências
Chow W.S., Tommy W.S., Chow S-Y.C. 2007: Neural Networks and Computing: Learning Algorithms and Applications. Imperial College Press: London, Great Britain, 322 p. https://doi.org/10.1142/p487
Croall I.F., Mason J.P. 1992: Industrial applications of neural networks: project ANNIE handbook. Springer- Verlag: Berlin, Heidelberg, Germany, 297 p. https://doi.org/10.1007/978-3-642-84837-7
Fine T.L. 1999: Feedforward Neural Network Methodology. Springer-Verlag: New York, USA, 340 p.
GOST 17.4.4.02-84. Soils. Methods of selection and preparation of samples for chemical, biological and helminthological analysis. (in Russian),
GOST 17.4.3.01-83. Soil. General requirements for sampling. (in Russian)
GOST 5180-84. Soils. Methods of laboratory determination of physical characteristics. (in Russian)
Gurney K. 1997: Introduction to Neural Networks. Taylor & Francis Group: New York, USA, 148 p. https://doi.org/10.4324/9780203451519
Mineev V.G. 2001: Practical work on agrochemistry. Publishing house of Moscow university: Moscow, Russia, 689 p. (in Russian)
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2019 Shomanova, Zhanat, Safarov, Ruslan , Shomanov, Adai, Tleulessov, Askar, Berdenov, Zharas, David, Lorant
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).