The impact of location, direction and distance on the abundance of invasive species in the surroundings of restoration experiments in the Kiskunság regi-on of Hungary

Authors

  • Nóra Sáradi HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary; National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina 29., 1113, Budapest, Hungary; Hungarian University of Agriculture and Life Sciences, Institute of Agronomy, Department of Botany, Agrobotany Team, 2100 Gödöllő Páter K. u. 1., e-mail: saradi.nora@ecolres.hu
  • Bruna Paolinelli Reis Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016 Lisboa, Portugal, e-mail: brunapaolinelli@gmail.com
  • Edina Csákvári HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary; National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina 29., 1113, Budapest, Hungary, e-mail: csakvari.edina@ecolres.hu
  • Anna Cseperke Csonka HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary; National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina 29., 1113, Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter 1/C, 1117 Budapest, Hungary, e-mail: csonka.cseperke@ecolres.hu
  • Márton Vörös HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary; National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina 29., 1113, Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter 1/C, 1117 Budapest, Hungary, e-mail: voros.marton@ecolres.hu
  • Krisztina Verbényiné Neumann Hungarian University of Agriculture and Life Sciences, Institute of Agronomy, Department of Botany, Agrobotany Team, 2100 Gödöllő Páter K. u. 1., e-mail: neumann.krisztina86@gmail.com
  • Katalin Török HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary, e-mail: torok.katalin@ecolres.hu
  • Melinda Halassy HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány 2-4, 2163 Vácrátót, Hungary; National Laboratory for Health Security, HUN-REN Centre for Ecological Research, Karolina 29., 1113, Budapest, Hungary, e-mail: halassy.melinda@ecolres.hu

DOI:

https://doi.org/10.56617/tl.6554

Keywords:

habitat restoration, invasive plants, invasive propagule, pressure, sandy grasslands, landscape-scale invasion

Abstract

The loss of biodiversity on our planet is partly due to the presence and spread of alien invasive species. Once an invasive species has established in a new habitat, it can alter the structure and function of the ecosystem to such an extent that it has an impact even after removal, making it very difficult to control and eradicate. Ecological restoration, when carried out in an effective and sustainable way, contributes to biodiversity conservation and climate change mitigation, resilience and adaptation, and has proven to be an effective method of controlling invasive species. At the same time, the presence of invasive species in the landscape can compromise restoration objectives. The aim of this study is to assess how the abundance of annual and perennial invasive species varies with location, direction and distance around the restoration site, and which factors should be considered when planning restoration interventions. For this purpose, in 2020–2021 eight restoration sites were selected in the Kiskunság, from the centre of restoration parcels the number of shoots of each invasive species was counted in 1 m × 1 m adjacent plots along 100-meter-long transects in the eight cardinal directions. All three landscape factors (location, direction, distance) had a significant effect on the number of shoots of invasive species. The annual invasive species were oriented according to the dominant wind direction characteristic of the area (NW-SE), while the perennials showed a NE dominance. The abundance of invasive species within 100 m gradually increased without abrupt changes with distance from the restored parcels, so this is not expected to have a significant impact on the success of restoration efforts. The location effect draws attention to the fact that the habitat composition and past history of a given site can have a significant impact on the success of restoration interventions. 

References

Agostinelli, C., Lund, U. 2022: R package 'circular': Circular Statistics (version 0.4–95)

Axmanová, I., Kalusová, V., Danihelka, J., Dengler, J., Pergl, P., Pyšek, P., Večeřa, M., Attore, F., Biurrun, I., Boch, S., Conradi, T., Gavilán, R.G., Jimenéz-Alfaro, B., Knollová, I., Kuzemko, A., Lenoir, J., Leostrin, A., Medvecká, J., Moeslund, J.E., Obratov-Petkovic, D., Svenning, J-C., Tsiripidis, I., Vassilev, K., Chytrý, M. 2021: Neophyte invasions in European grasslands. Journal of Vegetation Science 32: e12994. DOI: https://doi.org/10.1111/jvs.12994

Biró, M., Czúcz, B., Horváth, F., Révész, A., Csatári, B., Molnár, Zs. 2013a: Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landscape Ecology 28: 789–803. DOI: https://doi.org/10.1007/s10980-012-9818-0

Biró, M., Szitár, K., Horváth, F., Bagi, I., Molnár, Zs. 2013b: Detection of long-term landscape changes and trajectories in a Pannonian sand region: comparing land-cover and habitat-based approaches at two spatial scales. Community Ecology 14(2): 219–230. DOI: https://doi.org/10.1556/ComEc.14.2013.2.12

Botta-Dukát, Z. 2008: Invasion of alien species to Hungarian (semi-) natural habitats. Acta Botanica Hungarica 50: 219–227. DOI: https://doi.org/10.1556/ABot.50.2008.Suppl.11

Bölöni, J., Molnár, Zs., Kun, A., Biró, M. 2007: Általános Nemzeti Élőhely-osztályozási Rendszer (Á-NÉR 2007). MTA ÖBKI, Vácrátót

Buzási, A., Pálvölgyi, T., Esses, D. 2021: Drought-related vulnerability and its policy implications in Hungary. Mitigation and Adaptation Strategies for Global Change 26(11). DOI: https://doi.org/10.1007/s11027-021-09943-8

Büttner, G., Bíró, M., Maucha, M., Petrik, O. 2001: Land Cover mapping at scale 1:50.000 in Hungary: Lessons learnt from the European CORINE programme. In: A Decade of Trans-European Remote Sensing Cooperation, edited by M. F. Buchroithner. Proceedings of the 20th EARSeL Symposium, 14-16 June 2000 (Balkema Publishers, Lisse, The Netherlands). pp. 25–31.

Catford, J.A., Jones, L. 2019: Grassland invasion in a changing climate. In: Gibson D.J., Newman J.A. (eds.): Grasslands and Climate Change, Ecological Reviews, Cambridge University Press. pp. 149–171.

Csecserits, A., Botta-Dukát, Z., Kröel-Dulay, G., Lhotsky, B., Ónodi, G., Rédei, T., Szitár, K., Halassy, M. 2016: Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agriculture, Ecosystems & Environment 226: 88-98. DOI: https://doi.org/10.1016/j.agee.2016.03.024

Csiszár, Á. (szerk.) 2012: Inváziós növényfajok Magyarországon. Nyugat-magyarországi Egyetem Ki-adó. Sopron, p. 366.

Dauer, J. T., Mortensen, D.A., Luschei, E.C., Isard, S.A., Shields, E., VanGessel, M.J. 2009: Conyza ca-nadensis seed ascent in the lower atmosphere. Agricultural and Forest Meteorology 149: 526–534. DOI: https://doi.org/10.1016/j.agrformet.2008.10.005

Fenesi, A. 2012: Egyéves növényfajok inváziós sikerességét befolyásoló jellegek. Doktori Értekezés, ELTE Növényrendszertani és Ökológiai Tanszék, Biológia Doktori Iskola, Ökológia, Konzervációbiológia és Szisztematika Program. p. 97.

Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C.R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M.R ., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., Dixon, K.W. 2019: International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology 27: 1–46. DOI: https://doi.org/10.1111/rec.13035

Guido, A., Vélez-Martin, E., Overbeck, G.E., Pillar, V.D. 2016: Landscape structure and climate affect plant invasion in subtropical grasslands. Applied Vegetation Science 19(4): 600–610. DOI: https://doi.org/10.1111/avsc.12263

Halassy, M., Singh, A.N., Szabó, R., Szili-Kovács, T., Szitár, K., Török, K. 2016: The application of a filter-based assembly model to develop best practices for Pannonian sand grassland restoration. Journal of Applied Ecology 53: 765–773. DOI: https://doi.org/10.1111/1365-2664.12618

Halassy, M., Kövendi‐Jakó, A., Reis B.P., Szitár, K., Seyidova, Z., Török, K. 2021: N immobilization tre-atment revisited: A retarded and temporary effect unfolded in old‐field restoration. Applied Vegetati-on Science 24(1): e12555. DOI: https://doi.org/10.1111/avsc.12555

Helsen, K., Hermy, M., Honnay, O. 2013: Spatial isolation slows down directional plant functional gro-up assembly in restored semi-natural grasslands. Journal of Applied Ecology 50(2): 404–413. DOI: https://doi.org/10.1111/1365-2664.12037

Holl, K.D., Aide, T.M. 2011: When and where to actively restore ecosystems? Forest Ecology and Mana-gement 261: 1558–1563. DOI: https://doi.org/10.1016/j.foreco.2010.07.004

Kassambara, A. 2019: Practical Statistics in R II - Comparing Groups: Numerical Variables. Published by Datanovia. https://www.datanovia.com/en

Knolmajer, B., Jócsák, I., Taller, J., Keszthelyi, S., Kazinczi, G. 2024: Common Ragweed—Ambrosia arte-misiifolia L.: A Review with Special Regards to the Latest Results in Biology and Ecology. Agronomy 14(3): 497. DOI: https://doi.org/10.3390/agronomy14030497

Kovács-Láng, E., Molnár, E., Kröel-Dulay, G., Barabás, S. 2008: The KISKUN LTER: Long-term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany of HAS, Vácrátót, Hungary.

Llumiquinga, Y.B., Reis, B.P., Sáradi, N., Török, K., Szitár, K., Halassy, M. 2021: Long-term results of ini-tial seeding, mowing and carbon amendment on the restoration of Pannonian sand grassland on old fields. Tuexenia 41: 361–379. DOI: https://doi.org/10.14471/2021.41.013

Molnár, Zs. (szerk.) 2003: A Kiskunság száraz homoki növényzete. TermészetBÚVÁR Alapítvány Kiadó, Budapest. pp. 159.

Morse, D.H., Schmitt, J. 1985: Propagule size, dispersal ability, and seedling performance in Asclepias syriaca. Oecologia 67(3): 372–379. DOI: https://doi.org/10.1007/BF00384943

Ni, M., Deane, D.C., Li, S., Wu, Y., Sui, X., Xu, H., Chu, C., He, F., Fang, S. 2021: Invasion success and impacts depend on different characteristics in non-native plants. Diversity and Distributions 27: 1194–1207. DOI: https://doi.org/10.1007/BF00384943

Notar, J., Thomas, K. 2022: Answering biological questions using circular data and analysis in R. https://bigdata.duke.edu/wp-content/uploads/2022/07/FullLesson.html

O’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E., Duncan, R.P. 2016: Landscape Effects on the Spread of Invasive Species. Current Landscape Ecology Reports 1(1): 107–114. DOI: https://doi.org/10.1007/s40823-016-0012-y

Prach K., Fajmon K., Jongepierová I., Řehounková, K. 2015: Landscape context in colonization of restored dry grasslands by target species. Applied Vegetation Science 18(2): 181–189. DOI: https://doi.org/10.1111/avsc.12140

Price, C.A., Weltzin, J.F. 2003: Managing non-native plant populations through intensive community restoration in Cades Cove, Great Smoky Mountains National Park, USA. Restoration Ecology 11: 351–358. DOI: https://doi.org/10.1046/j.1526-100X.2003.00238.x

R Core Team 2022. R: A language and environment for statistical computing. R Foundation for Sta-tistical Computing, Vienna, Austria. https://www.R-project.org/

Reis, B.P., Kövendi‐Jakó, A., Szitár, K., Török, K., Halassy, M. 2021: Long‐term effect of mowing on the restoration of Pannonian sand grassland to replace invasive black locust plantation. Restoration Eco-logy 29: e13152. DOI: https://doi.org/10.1111/rec.13152

Reis, B.P., Szitár, K., Kövendi-Jakó, A., Török, K., Sáradi, N., Csávári, E., Halassy, M. 2022: The long-term effect of initial restoration intervention, landscape composition, and time on the progress of Panno-nic sand grassland restoration. Landscape and Ecological Engineering 18: 429–440. DOI: https://doi.org/10.1007/s11355-022-00512-y

Seebens, H., Blackburn, T.M., Dyer, E.E., Genovesi, P., Hulme, P.E., Jeschke, J.M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., Kartesz, J., Kenis, M., Kreft, H., Kühn, I., Lenzner, B., Liebhold, A., Mosena, A., Moser, D., Nishino, M., Pearman, D., Pergl, J., Rabitsch, W., Rojas-Sandoval, J., Roques, A., Rorke, S., Rossinelli, S., Roy, H.E., Scalera, R., Schindler, S., Štajerová, K., Tokarska-Guzik, B., van Kleunen, M., Walker, K., Weigelt, P., Yamanaka, T., Essl, F. 2017: No saturation in the accumulation of alien species worldwide. Nature Communications 8. DOI: https://doi.org/10.1038/ncomms14435

Szirmai, O., Saláta, D., Benedek, L.K., Czóbel, S. 2022: Investigation of the Secondary Succession of Abandoned Areas from Different Cultivation in the Pannonian Biogeographic Region. Agronomy 12: 773. DOI: https://doi.org/10.3390/agronomy12040773

Török, K., Botta-Dukát, Z., Dancza, I., Németh, I., Kiss, J., Mihály, B., Magyar, D. 2003: Invasion gateways and corridors in the Carpathian Basin: biological invasions in Hungary. Biological Invasions 5: 349–356. DOI: https://doi.org/10.1023/B:BINV.0000005570.19429.73

Török, K., Lohász, C. 2004: The effect of climate on the restoration success of sandy grasslands in Hun-gary. 16th International Conference of the Society for Ecological Restoration, Victoria, Canada. pp. 1–8.

Török, K., Szitár, K., Halassy, M., Szabó, R., Szili-Kovács, T., Baráth, N., Paschke, M.W. 2014: Long-term outcome of nitrogen immobilization to restore endemic sand grassland in Hungary. Journal of App-lied Ecology 51: 756–765. DOI: https://doi.org/10.1111/1365-2664.12220

Valkó, O., Deák, B., Török, P., Kelemen, A., Miglécz, T., Tóth, K., Tóthmérész, B. 2016: Abandonment of croplands: problem or chance for grassland restoration? Case studies from Hungary. Ecosystem He-alth and Sustainability 2: e 01208. DOI: https://doi.org/10.1002/ehs2.1208

Varga, I., Fodor, L., Bata, K., Czirák, Z., Váczi, O., Érdiné Szekeres, R. 2016: Az inváziós fajokról dióhéj-ban. Természetvédelmi füzetek 1. Fertő-Hanság Nemzeti Park Igazgatóság. p. 28.

Venables, W.N., Ripley, B.D. 2002: Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0. https://www.stats.ox.ac.uk/pub/MASS4/

Vilà, M., Ibáñez, I. 2011: Plant invasions in the landscape. Landscape Ecology 26: 461–472. DOI: https://doi.org/10.1007/s10980-011-9585-3

Wan, J.Z., Wang, C.J., Yu, F.H. 2017: Wind effects on habitat distributions of wind-dispersed invasive plants across different biomes on a global scale: assessment using six species. Ecological Informatics 42: 38-45. DOI: https://doi.org/10.1016/j.ecoinf.2017.09.002

Weidlich, E.W.A., Flórido, F.G., Sorrini, T.B., Brancalion, P.H.S. 2020: Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology 57: 1806–1817. DOI: https://doi.org/10.1111/1365-2664.13656

Wilson, J.R.U., Richardson, D.M., Rouget, M., Procheş, Ş., Amis, M.A., Henderson, L., Thuiller, W. 2007. Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions 13: 11–22. DOI: https://doi.org/10.1111/j.1366-9516.2006.00302.x

With, K. A. (2002). The landscape ecology of invasive spread. Conservation Biology 16: 1192–1203. DOI: https://doi.org/10.1046/j.1523-1739.2002.01064.x

Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M. 2009: Mixed Effects Models and Extensions in Ecology with R. Springer, Chapter 11.

Published

2024-12-29

Issue

Section

Articles

How to Cite

The impact of location, direction and distance on the abundance of invasive species in the surroundings of restoration experiments in the Kiskunság regi-on of Hungary. (2024). JOURNAL OF LANDSCAPE ECOLOGY, 22(2), 85-100. https://doi.org/10.56617/tl.6554

Similar Articles

1-10 of 417

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)