Projections for the impact of climate change on water balance in a grassland study site
DOI:
https://doi.org/10.56617/tl.4871Keywords:
water balance, soil moisture, evapotranspiration, lysimeter, plant available water, regional climate modelAbstract
The ongoing climate change in Europe is characterized by statistically significant warming in all seasons. Increasing temperatures also affect the precipitation intensity through the hydrological cycle, so that the assumed changes in the distribution and amount of precipitation and the continuously increasing temperatures may increase the rate of water use by plants, making the adaptability of vegetation to climate change a key issue. In the present paper, the hydrological effects of climate change were investigated under typical environmental conditions of a specific agricultural area in Austria. For this purpose, (1) a simple Thornthwaite-type monthly time-step water balance model was developed and (2) the model was used to project the water balance components for the 21st century for (a) a normal root depth (current condition) and (b) a (hypothetically) increased root depth representing the adaptation potential of vegetation to warming. To achieve the main objectives, the model was calibrated and validated with local reference data. The key parameter of the model is the soil moisture holding capacity (SOILMAX), expressed using root depth. The latter was calibrated using available evapotranspiration and soil physics properties. The calibrated model was used for projections using data from four bias-corrected regional climate models. Model runs with normal root depths resulted in increasing annual averages for evapotranspiration and soil moisture, but decreasing annual averages for soil moisture minimums by the end of the 21st century. However, the monthly values indicated that a decrease in soil moisture during the growing season is projected by the end of the 21st century. The vegetation of the selected agricultural area was shown in the model runs to be able to successfully adapt to increasing drought stress by increasing its root zone to its potential maximum.
References
Baumer, O.W. 1992: Predicting unsaturated hydraulic parameters. In: van Genuchten, M.Th., Leij, F.J. (Eds.): Proceedings of the international workshop on Indirect methods for estimating the hydraulic properties of unsaturated soils. Riverside, California, October 11–13, 1989, pp. 341–354.
Calanca, P.L., Roesch, A., Jasper, K., Wild, M. 2006: Global warming and the summertime evapotranspi-ration regime of the Alpine region. Climatic Change 79: 65–78. DOI: https://doi.org/10.1007/978-1-4020-5714-4_4
Canadell, J., Jackson, R.B., Ehleringer, J.B., Mooney, H.A., Sala, O.E., Schulze, E.D. 1996: Maximum roo-ting depth of vegetation types at the global scale. Oecologia 108(4): 583–595. DOI: https://doi.org/10.1007/BF00329030
Dingman, L.S. 2002: Physical Hydrology. Prentice-Hall, New Jersey, USA, p. 646
Dobor, L., Barcza, Z., Hlásny, T., Havasi, Á. 2013: Creation of the FORESEE database to support climate change related impact studies. Proceedings of the International Scientific Conference for PhD Stu-dents. Győr, Hungary. p. 6.
Eitzinger, J., Štastná, M., Žalud, Z., Dubrovsky, M. 2003: A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agri-cultural Water Management 61: 195–217. DOI: https://doi.org/10.1016/S0378-3774(03)00024-6
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., Bindi, M., Palosuo, T., Rötter, R., Kersebaum, K.C., Olesen, J.E., Patil, R.H., Şaylan, L., Çaldaģ Çaylak, O. 2013: Sensitivities of crop mo-dels to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. The Journal of Agricultural Science 151(6): 813–835. DOI: https://doi.org/10.1017/S0021859612000779
Götz, B., Hadatsch, S., Kratochvil, R., Vabitsch, A., Freyer, B. 2000: Biologische Landwirtschaft im Marchfeld. Potenziale zur Entlastung des Natur- und Landschaftshaushaltes. Umweltbundesamt GmbH, Vienna. p. 198.
Gray, S.B., Bradya, S.M. 2016: Plant developmental responses to climate change. Developmental Biology 419: 64–77. DOI: https://doi.org/10.1016/j.ydbio.2016.07.023
Hamon, W.R. 1964: Computation of direct runoff amounts from storm rainfall. Intl. Assoc. Scientific Hydrol. Publ. 63: 52–62.
Herceg, A., Kalicz, P., Kisfaludi, B., Gribovszki, Z. 2016: A monthlystep water balance model to evaluate the hydrological effects of climate change on a regional scale for irrigation design. Slovak Journal of Civil Engineering 24(4): 27–35. DOI: https://doi.org/10.1515/sjce- 2016-0019.
Heinrich, G., Gobiet, A. 2012: The future of dry and wet spells in Europe: A comprehensive study based on the ENSEMBLES regional climate models. International Journal of Climatology 32: 1951–1970. DOI: https://doi.org/10.1002/joc.2421
IPCC, 2007: Climate change 2007. Impacts, adaptation and vulnerability. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., (Eds.): Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 976
IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.Jacob, D. (2001): A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol. Atmos. Phys., 77: 61–73.
Jungvist, G., Oni, S.K., Teutschbein, C., Futter, M.N. 2014: Effect of climate change on soil temperature in Swedish boreal forests. PLoS One, 9(4): e93957. DOI: https://doi.org/10.1371/journal.pone.0093957
Keables, M.J., Mehta, S. 2010: A soil water climatology for Kansas. Great Plains Research, 20(2): 229–248. DOI: http://www.jstor.org/stable/23780298
van der Linden, P., Mitchell, J.F.B. (Eds.) 2009: ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. p. 160.
Lutz, J.A., Wagtendonk, J.W., Franklin, J.F. 2010: Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. Journal of Biogeography, 37: 936–950. DOI: https://doi.org/10.1111/j.1365-2699.2009.02268.x
Mohammed, R.K., Mamoru, I. Motoyoshi, I. 2012: Modeling of seasonal water balance for crop pro-duction in Bangladesh with implications for future projection. Ital. J. Agron., 7(2): 146–153. DOI: https://doi.org/10.4081/ija.2012.e21
Muggeo, V.M.R. 2008: Segmented: An R package to fit regression models with broken-line relationships. R News, The Newsletter of the R Project, 8(1): 20–25.
Nachtnebel, H.P., Dokulil, M., Kuhn, M., Loiskandl, W., Sailer, R., Schöner, W. 2014: Influence of climate change on the hydrosphere. In: Austrian Panel on Climate Change (APCC) Austrian Assessment Report Climate Change 2014 (AAR14). Austrian Academy of Sciences Press, Vienna, pp. 411–466.
Neuwirth, F., Mottl, W. 1983: Errichtung einer Lysimeteranlage an der agrar-meteorologischen Station in Groß-Enzersdorf. Wetter und Leben, 35: 48–53.
Nolz, R., Kammerer, G., Cepuder, P. 2013a: Interpretation of lysimeter weighing data affected by wind. J. Plant Nutr. Soil Sci., 176: 200–208. DOI: https://doi.org/10.1002/jpln.201200342
Nolz, R., Kammerer, G., Cepuder, P. 2013b: Improving interpretation of lysimeter weighing data. Die Bodenkultur: Journal for Land Management, Food and Environment 64: 27–35.
Nolz, R., Cepuder, P., Kammerer, G. 2014: Determining soil waterbalance components using an irrigated grass lysimeter in NE Austria. J. Plant Nutr. Soil Sci., 177: 237–244. DOI: https://doi.org/10.1002/jpln.201300335
Nolz, R., Cepuder, P., Eitzinger, J. 2016: Comparison of lysimeter based and calculated ASCE reference evapotranspiration in a subhumid climate. Theor. Appl. Climatol., 124(1): 315–324. DOI: https://doi.org/10.1007/s00704-015-1417-y
Rao, L.Y., Sun, G., Ford, C.R., Vose, J.M. 2011: Modeling potential evapotranspiration of two forested watershed in the southern appalachians. Trans. ASABE, 54(6): 2067–2078. DOI: https://doi.org/10.13031/2013.40666
R Core Team, 2012: R: A language and environment for statistical computing. R Foundation for Sta-tistical Computing, Vienna, Austria. http://www.R-project.org/.
Remrová, M., Císlerová, M. 2010: Analysis of climate change effects on evapotranspiration in the wa-tershed Uhlířská in the Jizera mountains. Soil & Water Research, 5(1): 28–38. DOI: https://doi.org/10.17221/5/2009-SWR
Strauss, F., Schmid, E., Moltchanova, E., Formayer, H., Wang, X. 2012: Modeling climate change and biophysical impacts of crop production in the Austrian Marchfeld Region. Climate Change, 111: 641. DOI: https://doi.org/10.1007/s10584-011-0171-0
Sun, G.K., Alstad, J., Chen, S., Chen, C.R., Ford, G., Lin, C., Liu, N., Lu, S.G, McNulty, H., Miao, A., Noor-mets, J.M., Vose, B., Wilske, M., Zeppel, Y., Zhang, Z. 2010: A general projective model for estimating monthly ecosystem evapotranspiration. Ecohydrol., 4(2): 245–255. DOI: https://doi.org/10.1002/eco.194
Thaler, S., Eitzinger, J., Trnka, M., Dubrovsky, M. 2012: Impacts of climate change and alternative adap-tation options on winter wheat yield and water productivity in a dry climate in Central Europe. The Journal of Agricultural Science, 150(5): 537–555. DOI: https://doi.org/10.1017/S0021859612000093.
Thornthwaite, C.W., Mather, J.R., 1955: The Water Balance. Drexel Institute of Technology, Climatologi-cal Laboratory Publication 8. Philadelphia, USA. p. 104.
Zamfir, R.H.C. 2014: The impact of climate changes on water balance from western Romania using computer tools. In: Niola, V. (Ed.): Recent Advances in Energy, Environment, Biology and Ecology. World Scientific and Engineering Academy and Society. ISBN: 978-960- 474-358-2.
Zheng, D., Hunt, E.R., Running, S.W. 1993: A daily soil temperature model based on air temperature and precipitation for continental applications. Clim. Res., 2: 183–191. DOI: https://doi.org/10.3354/cr002183.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Herceg András, Kalicz Péter, Gribovszki Zoltán
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).