Influence of sarmata burial customs on changes of soil redox conditions

Authors

  • Márta Fuchs Szent István University Gödöllő, Department of Soil Science and Agrochemistry, 2103 Gödöllő, Páter K. u. 1.
  • Tamás Szegi Szent István University Gödöllő, Department of Soil Science and Agrochemistry, 2103 Gödöllő, Páter K. u. 1.
  • Erika Michéli Szent István University Gödöllő, Department of Soil Science and Agrochemistry, 2103 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.4451

Keywords:

archaeology, soil science, iron pan, podzolisation, redox processes, human impact

Abstract

Pedology is an important tool in reconstruction of the environments of archeological sites. The 30 ha archeological site of a 4th-5th century sarmata pottery village raised several questions that needed pedological research to be answered. The archaeological site is located in the outskirts of Üllő, in near the junction of M60 motorway and 4th main road. The excavation was started in 2001. The territory of the site is more than 30 hectares now and includes fireplaces, storage pits, cisterns, buildings and three cemeteries, with 10-12 graves. Ditches surrounded most of these graves, and they were probably covered with mounds, which have been destroyed by intensive agricultural activity. Most questions that were related to location of fireplaces and storage pits in the ancient landscape were relatively easy to answer based on preserved genetic horizons of the soil mantel. A confusing formation of iron crusts in well drained, coarse textured, Calcic Chernozem (WRB) soil of the area induced the presented more detailed investigation. Two soil-forming processes can lead to removal and concentration of iron in soils, namely podzolisation and redox processes (oxidation-reduction processes). Podzolisation occurs only in acidic, well-drained sandy soil where organic acid from the litter layer dissolves iron and aluminum hydroxides in the upper part of the soil by forming complexes with the iron and aluminium. These complexes subsequently become mobile and are leached from the top layer by the percolated water and re-precipitate in the subsoil below. The enriched horizons, also called spodic horizons may be firmly cemented by leached and re-precipitated iron and aluminum compounds. Redox processes (oxidation and reduction processes) primarily take place in waterlogged soils. Here the biological activity will quickly consume all the oxygen and soil will become anaerobic. Ferric iron will be reduced to ferrous iron and the soil will lose its brownish color and turn olive, bluish or gray. The ferrous iron, being somewhat more mobile will follow the water movement and re-precipitate as ferric-hydroxides in places more rich in oxygen. Where a sharp and well-defined border between aerobic and anaerobic soil conditions is found, the iron precipitation may take place in a narrow zone and thus develop a hard, dense pan. During our investigations, according to Danish literature and experiences, we’ve proved this iron pan was developed under redox conditions. Based on the analytical data and the soil formation environment of the iron pan, the following hypothesis is suggested for the development of the iron pans. Shortly after construction of the pits and ditches anaerobic conditions arose in the core of the mound as a result of the decomposition of organic material. Soil aeration was impeded because of the distance between the core and the mound surface and the relatively wet and compact conditions in the core of the mound. Probably the core was soaked and treaded down during the erection of the mound to get a better structure, or it was just a chance that caused anaerobic conditions in the centre of the mound. Ferric iron was converted into ferrous and moved from the anaerobic core to more aerobic parts in the mound. At the border between the wet, anaerobic core and the dry aerobic areas, the iron was precipitated as ferric iron creating a thin, strongly cemented iron pan.

Author Biography

  • Márta Fuchs, Szent István University Gödöllő, Department of Soil Science and Agrochemistry, 2103 Gödöllő, Páter K. u. 1.

    corresponding author
    fuchs.marta@mkk.szie.hu

References

Ballenegger R., di Galéria J. (szerk.) 1962: Talaj- és trágyavizsgálati módszerek. Mezőgazdasági Kiadó, Budapest.

Barczi A., Sümegi P., Joó K. 2003: Adatok a Hortobágy paleoökológiai rekonstrukciójához a Csípő-halom talajtani és malakológiai vizsgálata alapján. Földtani Közlöny 131 (3): 421-431.

Bedő V. 2004: Tudományközi beszélgetések: régészet. Világosság 1: 83-90. https://doi.org/10.1556/AAgr.51.2003.1.11

Binford S. R., Binford L. 1968: New Perspectives in Archaeology. Chicago, Aldine. https://doi.org/10.2307/480428

Breuning-Madsen H., Holst M. K. 1998: Recent studies on the formation of iron pans around the oaken log coffins of Bronze Age burial mounds of Denmark. Journal of Archaeological Science 25: 1103-1110. https://doi.org/10.1006/jasc.1998.0288

Breuning-Madsen H., Ronsbo J., Holst M. K. 2000: Comparsion of the composition of iron pans in Danish burial mounds with bog iron and spodic material. Catena 39: 1-9. https://doi.org/10.1016/S0341-8162(99)00083-1

Breuning-Madsen H., Holst M. K., Rasmussen M. 2001: The chemical environment in a burial mound shortly after construction -an archeological-pedological experiment. Journal of Archeological Science 28: 691-697. https://doi.org/10.1006/jasc.1999.0570

Bronnikova M. A., Zazovskaya E. P., Bobrov A. A. 2003: Local landscape evolution related to human impact of an Early Medieval pre-urban center in the Upper Dnieper region (central russian plain): an interdisciplinary experience. Revista Mexicana de Ciencias Geológicas 20: 245-262.

Buol S. W., Southard R. J., Graham R. C., Mcdaniel P. A. 2003: Soil Genesis and Classification. Iowa State Press pp. 327-339.

Buzás I. (szerk.) 1988: Talaj-és agrokémiai vizsgálati módszerkönyv 1., 2. Mezőgazda Kiadó, Budapest,.

Crowder A. A., Macfie S. M. 1986: Seasonal deposition of ferric hydroxide plaque on roots of wetland plants. Canadian Journal of Botanists 64: 2120-2124. https://doi.org/10.1139/b86-279

FAO, ISRIC 1998: World Reference Base For Soil Resources. FAO, Rome.

Foss J. E., Timpson M. E. 2001: Contribution of pedology to archaeology: a U.S. perspective. In: Füleky, Gy. (ed.): Proceedings of the 1st International Conference on Soils and Archaeology. Környezetkímélő Agrokémiáért Alapítvány, Gödöllő, pp. 122-125.

Füleky Gy. 2003: Soils and environment of the bronze age tell in Százhalombatta. In: Füleky, Gy. (ed.): Soils and archaeology. pp. 79-93.

Holst M. K., Breuning-Madsen, H., Olsson M. 1998: Soil forming processes in and below a Bronze Age burial mound at Lejrskov, Southern Jutland. Danish Journal of Geography 98: 46-55. https://doi.org/10.1080/00167223.1998.10649410

Istvánovits E., Kulcsár V. 2002: Római kori barbárok (Kr. születése körül -5. század első harmada). In: Kováts T. (szerk.): Kelet és Nyugat határán, a magyar föld népeinek története Kr. e. 400 000 -Kr. u. 804. Helikon Kiadó, Budapest, pp. 105-113.

Joó K., Barczi A., Szántó Zs., Molnár M. 2003: A hortobágyi Csípő-halom talajtani vizsgálata. Agrokémia és Talajtan, 52: 5-20. https://doi.org/10.1556/agrokem.52.2003.1-2.2

Kocsis L., Kővári K., Kulcsár V., Patay R., Szabó Á., Tari E., Vágner Zs. 2002: Az Üllő 5. lelőhelyről írott 2002-es jelentés. pp. 6-11.

Kulcsár V. 1998: A kárpát-medencei szarmaták temetkezési szokásai. Múzeumi füzetek 49: 15-40.

Van Reeuwijk L. P. (szerk) 1995: Procedures for soil analysis, 5th edition. ISRIC, Wageningen, The Netherlands, 12-5 - 12-8. p.

Renfrew C. 1976: Archaeology and the earth sciences. In: Davidson, D.A. and Shackley, M.L. (eds.): Geoarchaeology, London, Duckworth, pp. 1-5.

Smith P. J. 1997: Grahame Clark's new archaeology: the Fenland Research Committee and Cambridge prehistory in the 1930s. Antiquity 71: 11-30. https://doi.org/10.1017/S0003598X00084490

Soil Survey Staff 1975: Soil Taxonomy. USDA-SCS Agriculture Handbook 436. US Government Printing Office, Washington, DC.

Sparks D. L. (szerk.) 1996: Methods of Soil Analysis. Part 3 Chemical Methods. Soil Sci. Soc. of Am., Inc., Am. Soc. of Agr., Inc., Madison. Wisconsin, USA, pp. 995-996.

Stefanovits P., Filep Gy., Füleky Gy. 1999: Talajtan. Mezőgazda Kiadó, Budapest.

Sümegi P., Magyari E., Kozák J., Tóth Cs. 1998: A Szakáld-Testhalom bronzkori tell geoarcheológiai vizsgálata. A kunhalmok felmérése, geomorfológiai, geológiai és paleoökológiai vizsgálata. Zárójelentés.

Szabolcs I. (ed.). 1966: A genetikus üzemi talajtérképezés módszerkönyve. OMMI. Budapest.

Taylor G. J., Crowder A. A. 1984: Formation and morphology of iron plaque on the roots of Typha latifolia grown in solution culture. American Journal of Botanists 71: 666-675. https://doi.org/10.1002/j.1537-2197.1984.tb14173.x

Tóth A. (szerk.) (1999): Kunhalmok. Alföldkutatásért Alapítvány Kiadványa, Kisújszállás.

USDA 1996: Soil Survey Laboratory Methods Manual. Soil Survey Investigation Report No. 42, Version 3.0. United State Department of Agriculture.

Zazovskaya E. P., Bronnikova M. 2001: Cultural layers of Medieval towns as a result of pedoathropogenic irreversible change in soil system of urban environment. In: Füleky, Gy. (edited): Proceedings of the 1st International Conference on Soils and Archaeology. Környezetkímélő Agrokémiáért Alapítvány, Gödöllő, 2001. 89-92. p.

Published

2006-07-30

Issue

Section

Eredeti közlemények

How to Cite

Influence of sarmata burial customs on changes of soil redox conditions. (2006). JOURNAL OF LANDSCAPE ECOLOGY, 4(1), 169-177. https://doi.org/10.56617/tl.4451

Similar Articles

1-10 of 178

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)