Ásott talajvízkutak vízminőségének tér- és időbeli változásainak értékelése egy alföldi településen a CCME WQI vízminőségi mutató alkalmazásával
DOI:
https://doi.org/10.56617/tl.4964Schlagwörter:
vízminőségi index, Báránd, monitoring adat, GISAbstract
A települések talajvízkészletének elszennyeződése globális jelenség, melynek csökkentéséhez számos környezetvédelmi intézkedés szükséges. Tanulmányunkban települési környezetben 2013-2022 között hosszú távú monitoring keretében vizsgáltuk a szennyvízcsatorna hálózat kiépítését követő talajvízszint és vízminőség változásokat, mely során 40 települési talajvízkútból végeztünk rendszeres mintavételt. A talajvízszint csatornázás előtti (2013) és azt követő időszakban (2017, 2022) bekövetkező változásait a nyári, nagymintás mintavételezések során mért vízszintek alapján értékeltük. Megállapítottuk, hogy 2013-ban a talajvízszint a felszínhez igen közel húzódott (<3m). A talajvíz szintje a település belső részein húzódott legmagasabban, míg a legmélyebb vízállás a település déli területein volt mérhető. A 2017-ben és 2022-ben mért talajvízszintben a megszűnő szennyvízkiáramlás következtében erőteljes süllyedés következett be. A monitoring adatokat a CCME WQI vízminőségi index segítségével vízminőségi kategóriákba sorolva nagyfokú szennyezettséget mutattunk ki a csatornázás (2013) előtti évben, ugyanis a kutak döntő része szennyezett és erősen szennyezett kategóriába került. A csatornázást követő monitoring időszakban jelentős pozitív irányú változást mutattunk ki a legtöbb vizsgált vízkémiai parméterben (pH, EC, NH4+, NO2-, NO3-, PO43-, COD, Na+). Tematikus ponttérképek alapján megállapítottuk, hogy a terület egyre nagyobb része mutat megfelelő vagy jó vízminőséget. Ezt a diszkriminancia analízis is alátámasztotta, ugyanis 87.4% pontossággal az adott vízkémiai paraméterek alapján meghatározható, hogy az adott minta a csatornázás előtti vagy utáni időszakból származik-e. Azonban a csatornázást követően 8 év után, továbbra is magas a szervetlen nitrogénformák és szervesanyag koncentrációk értéke, mely azt indikálja, hogy a területen felhalmozódott szennyezőanyagok továbbra is jelen vannak. A tisztulási folyamatok dinamikájának megértéséhez szükséges a további, hosszú távú monitoring.
Literaturhinweise
A 2000/60/EC (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. OJ L327, 22.12.2000.
Abdalla, F., Khalil, R. 2018: Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt. Journal of African Earth Sciences 141: 164–178. DOI: https://doi.org/10.1016/j.jafrearsci.2018.02.016
Adimalla, N., Qian, H., Tiwari, D. M. 2020: Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from the semi-urban region of South India. Ecotoxicology and Environmental Safety 207: 111277. DOI: https://doi.org/10.1016/j.ecoenv.2020.111277
Backman, B., Bodiš, D., Lahermo, P., Rapant, S., Tarvainen, T. 1998: Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology 36(1-2): 55–64. DOI: https://doi.org/10.1007/s002540050320
Baics T. 2013: Táji-és talajvízszint-változások Kunfehértó térségében. TÁJÖKÖLÓGIAI LAPOK| JOURNAL OF LANDSCAPE ECOLOGY, 11(1), 41-65. DOI: https://doi.org/10.56617/tl.3734
Balla D., Kiss E., Zichar M., Mester T. 2023: Vízminőségi monitoring adatok feldolgozása és publikálása WebGIS támogatással = Geoprocessing and publishing water quality monitoring data with WebGIS support. Geodesia es Kartografia 75(6): 4–9. https://doi.org/10.30921/GK.75.2023.6.1
Balla, D., Kiss, E., Zichar, M., Mester, T. 2023: Evaluation of groundwater quality in the rural environment using geostatistical analysis and WebGIS methods in a Hungarian settlement, Báránd. Environmental Science and Pollution Research.DOI: https://doi.org/10.1007/s11356-023-28627-1
Bouslah, S., Djemili, L., Houichi, L. 2017: Water quality index assessment of Koudiat Medouar Reservoir, northeast Algeria using weighted arithmetic index method. Journal of Water and Land Development 35(1): 221–228. DOI: https://doi.org/10.1515/jwld-2017-0087
Brown. R.M., McClelland N.I., Deininger R.A., Tozer R.G. 1970: A Water Quality Index: Do We Dare? Water Sewage Works 117(10): 339–343.
CPCB.2000: Water quality status of Yamuna River, Central Pollution Control Board, New Delhi, series AD-SORBS/32/1999–2000.
Cude, C. 2001: Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of American Water Resources Association 37: 125–137. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb05480.x
Dinius, S. H. 1987: Design of an index of water quality. Water Resources Bulletin 23(5): 833– 843. DOI: https://doi.org/10.1111/j.1752-1688.1987.tb02959.x
Dunnette, D. A. 1979: A Geographically Variable Water Quality Index Used in Oregon. Journal of Water Pollution Control Federation 51(1): 53–61.
ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
Horton R. K. 1965: An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.
HS 1484-13. Hungarian Standard Water Quality. Part 12: Determination of Nitrate and Nitrite. Content by Spect-rophotometric Method. 2009. Letöltés: http://www.mszt.hu (2024.01.24.)
HS 448-18. Hungarian Standard Water Quality. Part 18: Drinking Water Analysis. Determination of Orthophos-phate and Total Phosphorus Using Spectrophotometric Method. 2009. Letöltés: http://www.mszt.hu (2024.01.24.)
HS ISO 7150-1:1992 Hungarian Standard Water quality. Determination of ammonium. Part 1: Manual spect-rophotometric method. Letöltés: http://www.mszt.hu (2024.01.24.)
HS ISO 21464:1998. Sampling of ground water. Letöltés: http://www.mszt.hu (2024.04.18.)
IBM Corp. Released 2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.
Judeh, T., Bian, H., Shahrour, I. 2021. GIS-Based Spatiotemporal Mapping of Groundwater Potability and Palatabi-lity Indices in Arid and Semi-Arid Areas. Water 13: 1323. DOI: https://doi.org/10.3390/w13091323
Juhász D. 2022: A talajvíz minőségének állapotfelmérése Mezőkövesd település példáján. Az elmélet és gyakorlat találkozása a térinformatikában XIII: 169–176.
Juhász D. 2021: Mezőkövesd talajvízminőségének állapotfelmérése és értékelése. Az elmélet és a gyakorlat találko-zása a térinformatikában XII: 129–136.
Jumma, A.J., Mohd, E.T., Noorazuan, M.H. 2012: Groundwater pollution and wastewater management in Derna City, Libya. International Environmental Research Journal 6(1): 50–54.
Kannel, P.R., Lee, S., Lee, Y.S., Kanel, S.R., Khan, S.P. 2007: Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environmental Monitoring. Assess-ment 132: 93–110. DOI: https://doi.org/10.1007/s10661-006-9505-1
Kerényi, A., McIntosh, R.W. 2020: Changes on Earth as a Result of Interaction Between the Society and Nature. In: Sustainable Development in Changing Complex Earth Systems. Sustainable Development Goals Series. Sprin-ger, DOI: https://doi.org/10.1007/978-3-030-21645-0_4
Khorasani, H., Kerachian, R., Aghayi, M.M., Zahraie, B., Zhu, Z. 2020. Assessment of the impacts of sewerage net-work on groundwaterquantity and nitrate contamination: Case study of Tehran. World Environmental and Water Resources Congress 2020: Groundwater, Sustainability, Hydro-Climate/Climate Change, and Environ-mental Engineering; American Society of Civil Engineers: Reston, VA, USA, pp. 53–66.
Központi Statisztikai Hivatal (KSH) http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_zrk006b.html (Letöltve: 2024.01.08.).
Lumb, A., Halliwell, D., Sharma, T. 2006: Application of CCME Water Quality Index to monitor water quality: A case of the Mackenzie River Basin, Canada”, Environmental Monitoring and Assessment 113: 411–429. DOI: https://doi.org/10.1007/s10661-005-9092-6
Machiwal, D., Jha, M.K. 2015: Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies 4: 80–110. DOI: https://doi.org/10.1016/j.ejrh.2014.11.005
Majolagbe, A.O., Adeyi, A.A., Osibanjo, O. 2016: Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (Olusosun), Lagos, Nigeria. Chemistry International 2(4): 232–241.
Mester T. 2020. A szennyvízcsatorna-hálózat kiépítését követő talajvízminőség-változások vizsgálata egy kelet-magyarországi település példáján. Doktori értekezés. Debrecen, pp. 1–171.
Mester, T., Balla, D., Szabó, G. 2020: Assessment of Groundwater Quality Changes in the Rural Environment of the Hungarian Great Plain Based on Selected Water Quality Indicators. Water, Air, & Soil Pollution 231(11): 1–14. DOI: https://doi.org/10.1007/s11270-020-04910-6
Mester, T., Balla, D., Karancsi, G., Bessenyei, É., Szabó, G. 2019: Effects of nitrogen loading from domestic wastewa-ter on groundwater quality. Water SA 45(3): 349–358. http://dx.doi.org/10.17159/wsa/2019.v45.i3.6731
Mester, T., Balla, D., Szabó, G. 2018: Evaluation of the cleaning process of groundwater following the establishment of a sewage system. IOP Conference Series: Earth and Environmental Sciences 191: 1–6. DOI: https://doi.org/10.1088/1755-1315/191/1/012009
Mester, T., Szabó, G., Bessenyei, É., Karancsi, G., Barkóczi, N., Balla, D. 2017: The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement. Journal of Water and Land Development 33(4-6): 123–129. DOI: https://doi.org/10.1515/jwld-2017-0027
Nemčić-Jurec, J., Singh, S.K., Jazbec, A., Gautam, S.K., Kovač, I. 2017: Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustainable Water Resources Management 5: 1-24. https://doi.org/10.1007/s40899-017-0200-x
Nlend, B., Celle-Jeanton, H., Huneau, F., Ketchemen-Tandia, B., Fantong, W.Y., Boum-Nkot, S.N., Etame, J. 2018: The impact of urban development on aquifers in large coastal cities of West Africa: Present status and future chal-lenges. Land Use Policy 75: 352-363. DOI: https://doi.org/10.1016/j.landusepol.2018.03.007
Ott, W.R. 1978: Environmental indices: Theory and practice. Ann Arbor Science Publishers Inc., Ann Arbor.
Prati, L., Pavanello, R., Pesarin, F. 1971: Assessment of surface water quality by a single index of pollution. Water Research 5: 741–775. DOI: https://doi.org/10.1016/0043-1354(71)90097-2
Prohászka V.J., Tormáné Kovács E., Grósz J., Waltner I. 2022: Az ásott kutak vízminősége két ökofaluban: Vis-nyeszéplakon és Gyűrűfűn. TÁJÖKÖLÓGIAI LAPOK| JOURNAL OF LANDSCAPE ECOLOGY 20.2 (2022): 41–58. DOI: https://doi.org/10.56617/tl.3449
Ravikumar, P., Somashekar, R.K. 2012: Assessment and modelling of groundwater quality data and evaluation of their corrosiveness and scaling potential using environmetric methods in Bangalore South Taluk, Karnataka State, India. Water Resources 39(4): 446–473. DOI: https://doi.org/10.1134/S0097807812040112
Richards, S., Paterson, E., Withers, P. J., Stutter, M. 2016: Septic tank discharges as multi-pollutant hotspots in catchments. Science of the Total Environment 542: 854–863. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.160
Rotaru, A., Răileanu, P. 2008: Groundwater contamination from waste storage works. Environmental Engineering & Management Journal 7(6) 731–735.
Sharifi, M. 1990: Assessment of Surface Water Quality by an Index System in Anzali Basin. In The Hydrological Basis for Water Resources Management, IAHS, Vol. 197, pp. 163–171.
Smith, D.G. 1987: Water Quality Indexes for Use in New Zealand’s Rivers and Streams. Water Quality Centre Pub-lication No. 12, Water Quality Centre, Ministry of Works and Development, Hamilton, New Zealand.
Smith, D.G. 1990: A better water quality indexing system for rivers and stream. Water Research 24(10): 1237–1244. DOI: https://doi.org/10.1016/0043-1354(90)90047-A
Smoroń, S. 2016: Quality of shallow groundwater and manure effluents in a livestock farm. Journal of Water and Land Development 29(1): 59–66. DOI: https://doi.org/10.1515/jwld-2016-0012
Surfer® from Golden Software LLC
Swamee, P.K., Tyagi, A. 2007: Improved method for aggregation of water quality subindices. Journal of Environ-mental Engineering 133: 220–225. DOI: https://doi.org/10.1061/(ASCE)0733-9372(2007)133:2(220)
Szabó G., Szabó Sz., Szabó A., Szemán B. 2006: A talajvíz kutak szennyezettségének vizsgálata Mikepércsen és Bodrogkeresztúron In: Kertész Á, Dövényi Z., Kocsis K., Madarász B., Kovács A. (szerk.): III. Magyar Földrajzi Konferencia: absztrakt kötet + CD-ROM Budapest, Magyarország, MTA Földrajztudományi Kutatóintézet, p. 238.
Wilcoxon, F. 1992: Individual comparisons by ranking methods. In Breakthroughs in statistics. Springer, New York, pp. 196–202.
Downloads
Veröffentlicht
Ausgabe
Rubrik
Lizenz
Copyright (c) 2024 Balla Dániel, Kiss Emőke, Zichar Marianna, Mester Tamás
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitungen 4.0 International.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).