Potential carbon sequestration across Szentendre Island

Autor/innen

  • Lyndré Nel Szent István University, Institute of Natural Resources Protection, 2100 Gödöllő, Páter K. u. 1.
  • Malihe Masoudi Szent István University, Institute of Natural Resources Protection, 2100 Gödöllő, Páter K. u. 1.

DOI:

https://doi.org/10.56617/tl.3493

Schlagwörter:

soil carbon, land-use change, land-cover change, InVEST, ecosystem service mapping

Abstract

Land-use in Hungarian landscapes have generally seen a decrease in agricultural land and increases in uncultivated land cover and forestry. Such types of land-use change have a cumulative impact on the atmospheric carbon that can potentially be sequestered across a landscape. The transformation of natural vegetation into cultivated land-use types and cultivated into uncultivated types alter the operationality of soil carbon storage across a time scale. This study looks at the land-use change and soil carbon storage potential, as an ecosystem service, on the Szentendre Island (59 km2) in the Danube River, Hungary, in 1998 and 2018. Land-use and land-cover (LULC) and topsoil carbon storage in 1998 and 2018 were mapped with the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) Carbon Storage and Sequestration Model. Current LULC data were matched with carbon pool data as inputs for the Carbon Model. The resulting maps present the potential carbon storage value of landuse types across the Island for 1998 and 2018. Over 20 years, Szentendre Island experienced changes in LULC; an increase in artificial surfaces, forests, and pastures, and a decrease in arable land, natural vegetation, and wetlands. Based on the land-use data, our result showed that potentially 736.97 Mg of carbon was stored in the topsoil (0–20 cm) of the Szentendre Island in 1998, compared to 737.33 Mg of carbon in 2018. In conclusion, consideration is given to the land-use change trends and the need for environmental impact assessments and programs that increase soil carbon storage for the highest level of potential carbon sequestration on Szentendre Island.

Autor/innen-Biografie

  • Lyndré Nel, Szent István University, Institute of Natural Resources Protection, 2100 Gödöllő, Páter K. u. 1.

    corresponding author
    Lyndre.Nel@phd.uni-szie.hu

Literaturhinweise

Barczi A., Centeri Cs. 1999: A mezőgazdálkodás, a természetvédelem és a talajok használatának kapcsolatrendszere. ÖKO - Ökológia Környezetgazdálkodás Társadalom 10(1-2): 41–48.

Boecker, D., Centeri, Cs., Welp, G., Möseler, B M. 2015: Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica 50(2): 91–106. https://doi.org/10.1007/s12224-015-9210-3

Brady, N.C., Weil, R.R. 2017: The nature and properties of soils. Pearson. 14th edition

Bossard, M., Feranec, J., Otahel, J. 2000: CORINE land cover technical guide – Addendum 2000. Available at: https://land.copernicus.eu/user-corner/technical-library/tech40add.pdf (Accessed: 30th of January 2020)

Buzási, A., Dajka, F. 2019: A Duna–Ipoly Nemzeti Park éghajlati sérülékenységének vizsgálata. Tájökológiai Lapok (Journal of Landscape Ecology) 17(2): 147–164.

Büttner, G., Kosztra, B., Soukup, T., Sousa, A., Langanke, T. 2017: CLC2018 technical guidelines. European Environment Agency, Wien. 2017. Oct. 25.

Cegielska, K., Noszczyk, T., Kukulska, A., Szylar, M., Hernik, J., Dixon-Gough, R., Jombach, S., Valánszki, I., Kovács, K.F. 2018: Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy 78: 1–8. https://doi.org/10.1016/j.landusepol.2018.06.017

Centeri, Cs., Szabó, B., Jakab, G., Kovács, J., Madarász, B., Szabó, J., Tóth, A., Gelencsér, G., Szalai, Z., Vona, M. 2014: State of soil carbon in Hungarian sites: loss, pool and management. In: Margit, A (szerk.) Soil carbon: types, management practices and environmental benefits. New York (NY), USA, Nova Science Publishers pp. 91–117.

Csorba P., Ádám Sz., Bartos-Elekes Zs., Bata T., Bede-Fazekas Á., Czúcz B., Csima P., Csüllög G., Fodor N., Frisnyák S. et al. 2018: Tájak. In: Kocsis K. (ed.): Magyarország Nemzeti Atlasza 2. kötet. Természeti környezet. MTA CSFK Földrajztudományi Intézet, Budapest, pp. 112–129.

Dignac, M.F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Chevallier, T., Freschet, G.T., Garnier, P., Guenet, B., Hedde, M. 2017: Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for sustainable development 37(2): 14. https://doi.org/10.1007/s13593-017-0421-2

ESRI (Environmental Systems Research Institute) 2014: ArcGIS Desktop 10.4.1 (GIS Software). Geostatistical Analyst. http://resources.arcgis.com/en/help/main/10.2/index.html.

European Commission 2012: Natura 2000 network. Available from: https://ec.europa.eu/environment/nature/natura2000/

FÖMI (Hungarian Institute of Surveying and Remote Sensing) 2016. National Land Cover Database (1998/1999) At scale 1:50.000 in Hungary [Vector]. Available from http://fish.fomi.hu/letoltes-/nyilvanos/corine.

Frantál, B., Kunc, J., Nováková, E., Klusáček, P., Martinát, S., Osman, R. 2013: Location matters! Exploring brownfields regeneration in a spatial context (Case study of the South Moravian Region, Czech Republic). Moravian Geographical Report 21(2), 5–19. https://doi.org/10.2478/mgr-2013-0007

Gergely, A. 2011: Habitat mapping of Natura 2000 sites in Szentendre Island in the Central Region of Hungary– experiences of the remapping. Problemy Ekologii Krajobrazu 30: 377–380.

Gutierrez-Arellano, C., Mulligan, M. 2018: A review of regulation ecosystem services and disservices from faunal populations and potential impacts of agriculturalisation on their provision, globally. Nature Conservation 30: 1–39. https://doi.org/10.3897/natureconservation.30.26989

Bőhm, É. I. 2015: A Szentendrei-sziget tájtörténete. Hungarian-Slovakian cross border cooperation program 2007–2013 and the European Union. Szigetmonostor, Hungary.

IPCC (Intergovernmental Panel on Climate Change) 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press

Jakab, G., Szabó, J., Szalai, Z., Mészáros, E., Madarász, B., Centeri, Cs., Szabó, B., Németh, T., Sipos, P. 2016: Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates. Environmental Earth Sciences 75(2): 144–154. https://doi.org/10.1007/s12665-015-5052-9

Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.J., Folberth, G., Schlamadinger, B., Hutjes, R.W., Ceulemans, R., Schulze, E.D., Valentini, R. 2003: Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300(5625): 1538–1542. https://doi.org/10.1126/science.1083592

Kizekova, M., Feoli, E., Parente, G., Kanianska, R. 2017: Analysis of the effects of mineral fertilization on species diversity and yield of permanent grasslands: revisited data to mediate economic and environmental needs. Community Ecology 18(3): 295–304. https://doi.org/10.1556/168.2017.18.3.8

Kovács, E., Kelemen, E., Kalóczkai, Á., Margóczi, K., Pataki, G., Gébert, J., Málovics, G., Balázs, B., Roboz, Á., Krasznai Kovács, E., Mihók, B. 2015: Understanding the links between ecosystem service trade-offs and conflicts in protected areas. Ecosystem Services. 12: 117–127. https://doi.org/10.1016/j.ecoser.2014.09.012

Lal, R. 2004: Soil carbon sequestration impacts on global climate change and food security. Science 304(5677): 1623–1627. https://doi.org/10.1126/science.1097396

Lal, R. 2008: Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1492): 815–830. https://doi.org/10.1098/rstb.2007.2185

Lewis, S.L., Maslin, M.A. 2015: Defining the Anthropocene. Nature 519(7542): 171–180. https://doi.org/10.1038/nature14258

Lüscher, G., Ammari, Y., Andriets, A., Angelova, S., Arndorfer, M., Bailey, D., Balázs, K., Bogers, M., Bunce, R. G. H., Choisis, J-P. et al. 2016: Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions. Ecology 97: 1625–1625. https://doi.org/10.1890/15-1985.1

Malatinszky, Á. 2016: Stakeholder perceptions of climate extremes' effects on management of protected grasslands in a Central European area. Weather, Climate, and Society 8(3): 209–217. https://doi.org/10.1175/WCAS-D-15-0029.1

Malhi, Y. 2002: Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360(1801): 2925–2945. https://doi.org/10.1098/rsta.2002.1098

Möckel, S. 2017: The European ecological network "Natura 2000" and its derogation procedure to ensure compatibility with competing public interests. Nature Conservation 23: 87–116. https://doi.org/10.3897/natureconservation.23.13603

Nesshöver, C., Assmuth, T., Irvine, K.N., Rusch, G.M., Waylen, K.A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O.I., Wilkinson, M.E., Wittmer, H., 2016: The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Science of the Total Environment 579: 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106

Ontl, T.A., Schulte, L.A. 2012: Soil Carbon Storage. Nature Education Knowledge

OpenStreetMap Contributors, Geofabrik GmbH. 2019: Open Street Map Data In Layered GIS Format (Hungary Roads). Available from osm-internal.download.geofabrik.de (Accessed: 5th of January 2018)

Orosz, G., Ónodi, G., Sipos, B., Molnár, D., Váradi, I. 2015: Szentendre Eco Island in the Agglomeration of Budapest. Conference Proceedings: Second International Conference on Agriculture in an Urbanizing Society Reconnecting Agriculture and Food Chains to Societal Needs, Rome, Italy, 14th-17th of Sept. 2015. p. 183.

Sanderman, J., Hengl, T., Fiske, G.J. 2017: Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences 114(36): 9575–9580. https://doi.org/10.1073/pnas.1706103114

Schlesinger, W.H. 1986: Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka J.R., Reichle D.E. (eds.): The changing carbon cycle. Springer, New York. pp. 194–220. https://doi.org/10.1007/978-1-4757-1915-4_11

Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., et al. 2018: InVEST 3.5.0. User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

Slámová, M., Jakubec, B., Hreško, J., Beláček, B., Gallay, I. 2015: Modification of the potential production capabilities of agricultural terrace soils due to historical cultivation in the Budina cadastral area, Slovakia. Moravian Geographical Reports 23(2): 47–55. https://doi.org/10.1515/mgr-2015-0010

Smith, P. 2004: Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy 20(3): 229–236. https://doi.org/10.1016/j.eja.2003.08.002

Szalai, Z.; Szabó, J., Kovács, J., Mészáros, E., Albert, G., Centeri, Cs., Szabó, B., Madarász, B., Zacháry, D., Jakab, G. 2016: Redistribution of soil organic carbon triggered by erosion at field scale under subhumid climate, Hungary. Pedosphere 26(5): 652–665. https://doi.org/10.1016/S1002-0160(15)60074-1

Szilassi P. 2017: Magyarországi kistájak felszínborítás változékonysága és felszínborítás mozaikosságuk változása. Tájökológiai Lapok (Journal of Landscape Ecology) 15(2): 131–138.

Tóth, G., Jones, A., Montanarella, L. 2013: LUCAS Topsoil Survey. Methodology, data and results. JRC Technical Reports. Luxembourg. Publications Office of the European Union, EUR26102 – Scientific and Technical Research series.

Xiaoke, W., Yahui, Z., Zongwei, F. 1994: Carbon dioxide release due to change in land use in China mainland. Journal of Environmental Sciences (China) 6(3): 287–295.

Yang, S., Sheng, D., Adamowski, J., Gong Y., Zhang J., Cao J. 2018: Effect of land use change on soil carbon storage over the last 40 years in the Shi Yang River Basin, China. Land 7(1): 11. https://doi.org/10.3390/land7010011

Veröffentlicht

2020-12-09

Ausgabe

Rubrik

Cikkek

Zitationsvorschlag

Potential carbon sequestration across Szentendre Island. (2020). TÁJÖKÖLÓGIAI LAPOK | JOURNAL OF LANDSCAPE ECOLOGY , 18(2), 165-173. https://doi.org/10.56617/tl.3493

Ähnliche Artikel

1-10 von 144

Sie können auch eine erweiterte Ähnlichkeitssuche starten für diesen Artikel nutzen.