Phytolith profile cadastre of the most significant and abundant soil types of Hungary I–II.

Methodological aspects and results of the examined mountain, rocky soils and

Authors

  • Ákos Pető Szent István University, Institute of Environmental and Landscape Management, Department of Nature Conservation and Landscape Ecology, H-2103 Gödöllő, Páter Károly u. 1., Field Service for Cultural Heritage, Laboratory of Conservation and Applied Research, H-1036 Budapest, Dugovics Titusz tér 13-17.
  • Attila Barczi Szent István University, Institute of Environmental and Landscape Management, Department of Nature Conservation and Landscape Ecology, H-2103 Gödöllő, Páter Károly u. 1.

DOI:

https://doi.org/10.56617/tl.3970

Keywords:

plant opal, rocky soils, sandy soils, rankers

Abstract

The analysis of plant opal particles – also known as phytoliths – plays an important role in landscape reconstruction, landscape ecology and archaeology. Phytolith analysis may help to reconstruct the vegetation of a modern or palaeoprofile, to undesratnd landscape forming factors and to determine the extent of possible human impact on the landscape. At the same time, the knowledge of soil forming factors and processes helps to analyse phytolith assemblages and to interpret vegetation patterns.
Based upon the mentioned ideas, we aimed to lay the bases of a soil-phytolith cadastre representing Hungary’s – in a wider scope the Carpathian Basin’s – most significant and abundant soil types and their effects on vegetation. Besides the analysis of typical soil types, we addressed issues related to landuse, cultivation, so we could take typical landuse types into account when analysing a given soil type.
After summarizing issues related to methdology and nomenclature, we give an insight to the first results of the phytolith research and analysis of examined mountain and and rocky soils. Relationships of the soil-plant- land use system was investigated.
Based on the first results it seems that phytolith distribution in mountain and humic sandy soils is not only effected strongly by water and wind erosion, but vertical infiltration has a significant effect in the redistribution of plant opals. Soil profiles of open vegetation habitats contain lower amounts of plant opal, however their morphotype spectra is chracteristic of the habitat. Results show that profiles under pasture land store higher amount of phytolith. In case of plough lands, the biomass removal results in low phytolith input and the ocassionally appearence of weed and external plant indicators. In case of loose parent material, recovered bioliths help to identify polygenetical processes. The investigated ranker profiles’ phytolith morphotype spectra turned out to be diversified, which is due to the more diverse recent vegetation. Steps in vegetational processes (forest-grassland alterations) and antropogenic impacts can be traced back based on the vertical phytolith distribution of the profiles. On the whole, phytolith distribution can only be assessed on a greater time-scale together with well-understood polygenetical soil forming processes.
Hopefully the soil-phytolith cadastre and morphotype spectra will serve the future goals of landscape reconstruction works.

Author Biography

  • Ákos Pető, Szent István University, Institute of Environmental and Landscape Management, Department of Nature Conservation and Landscape Ecology, H-2103 Gödöllő, Páter Károly u. 1., Field Service for Cultural Heritage, Laboratory of Conservation and Applied Research, H-1036 Budapest, Dugovics Titusz tér 13-17.

    corresponding author
    akos.peto@kosz.gov.hu

References

Alexandre A., Meunier J-D., Colin F., Koud J.M., 1997: Plant impact on the biogeochemical cycle of silicon and related processes. Geochim. Cosmochim. Acta 61 (3): 677- 682. https://doi.org/10.1016/S0016-7037(97)00001-X

Barczi A., Golyeva A.A., Pető Á. 2009: Paleoenvironmental reconstruction of Hungarian kurgans on the basis of the examination of paleosoils and phytolith analysis. Quaternary International 193: 49-60. https://doi.org/10.1016/j.quaint.2007.10.025

Bartoli F., Wilding L. P. 1980: Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Science Society of America Journal 44: 873-878. https://doi.org/10.2136/sssaj1980.03615995004400040043x

Bartoli F., 1983: The biogeochemical cycle of silicon in two temperate forest ecosystems. Ecol. Bull. (Stockholm) 35: 469-476.

Bennet P. C., Siegel D. I., Hill B. M. Glaser, P. H., 1991: Fate of silicate minerals in a peat bog. Geology 19: 328-331. https://doi.org/10.1130/0091-7613(1991)019<0328:FOSMIA>2.3.CO;2

Birkeland P.W. 1999: Soils and Geomorphology. Oxford University Press, pp. 430

Conley D.J. 1997: Riverine contribution of biogenic silica to the oceanic silica budget. Limnol. Oceanogr. 42: 774-777. https://doi.org/10.4319/lo.1997.42.4.0774

Conley D.J. 2002: Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem. Cycles 16: 68/1-68/8. https://doi.org/10.1029/2002GB001894

Conley D.J., Meunier J-D., Sommer M., Kaczorek D., Saccone L. 2006: Silicon in terrestrial biogeosphere. In: Ittekkot V., Unger D., Humborg C., Tac An N. (eds.): The Silicon Cycle. SCOPE, Island Press, Washington DC., pp. 13-28.

Dietzel M., 2002: Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I., Bucher K. (eds.): Water-rock interaction. Kluwer, Netherlands, pp. 207-235. https://doi.org/10.1007/978-94-010-0438-1_9

Dietzel M. (2000): Dissolution of silicates and the stability of polysilicic acid. Geochim. Cosmochim. Acta 64: 3275-3281. https://doi.org/10.1016/S0016-7037(00)00426-9

Dodd J.R., Stanton Jr. R.J., 1990: Paleoecology. Concepts and Applications. Wiley, New York, pp. 502

Drees L.R., Wilding L.P., Smeck N.E., Senkayi A.L., 1989: Silica in soils: quartz and disordered silica polymorphs. In: Dixon J.B., Weed S.B. (eds.): Minerals in Soil Environments. Soil Science of America, Madison, WI, pp. 913-974.

Farmer V.C., Delbos E., Miller J.D., 2005:The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127: 71-79. https://doi.org/10.1016/j.geoderma.2004.11.014

Finnern H. (ed.) 1994: Pedological mapping manual. 4. Verbesserte und erweiterte Auflage, Hannover.

Golyeva A.A. 1997: Content and distrubution of phytoliths in the main types of soils in Eastern Europe. In: Pinilla A., Juan-Tresseras J. & Machado M. J. (eds.): Monografias del centro de ciencias medioambientales, CSCI (4), The state of-the-art of phytholits in soils and plants, Madrid, p. 15-22.

Golyeva, A. A. 2001a. Biomorphic analysis as a part of soil morphological investigations. Catena, 43, 217-230. https://doi.org/10.1016/S0341-8162(00)00165-X

Golyeva, A. A. 2001b. Phytoliths and their information role in natural and archaeological objects. Moscow, Syktyvar Elista, 200.

Hart D. M., Humphreys G.S. 1997: The mobility of phytoliths in soils; pedological considerations. . In: Pinilla A., Juan-Tresseras J. & Machado M. J. (eds.): Monografias del centro de ciencias medioambientales, CSCI (4), The state of-the-art of phytholits in soils and plants, Madrid, p. 93-100.

Juggins S. 2007: C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University,Newcastle upon Tyne, UK. Pp. 73

Kamanina I. Z. (1997a): Phytolits data analysis of soils of different landscape zones. In: Pinilla A., Juan- Tresseras J. & Machado M. J. (eds.): Monograf.as del centro de ciencias medioambientales, CSCI (4), The state of-the-art of phytholits in soils and plants, Madrid. p. 23-32.

Kamanina I. Z. (1997b): Accumulation of phytoliths in Southern Taiga soils of different age. In: Pinilla A., Juan-Tresseras J. & Machado M. J. (eds.): Monograf.as del centro de ciencias medioambientales, CSCI (4), The state of-the-art of phytholits in soils and plants, Madrid. p. 45-47.

Kealhofer L., Piperno D.R. 1998: Opal phytoliths in Southeast Asian flora. Smithsonian Contributions to Botany, No. 88. https://doi.org/10.5962/bhl.title.103698

Király G., Molnár Zs., Bölöni J., Vojtkó A. (szerk.) 2008: Magyarország földrajzi kistájainak növényzete. MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót

Madella M. 2008: The "stones from plants": A review of phytolith studies and classification in Europe, Asia and North America. In: Zucol A.F., Osterrieth, M.L. & Brea, M. (eds.): Fitolitos estados actual de su conocimiento en America del Sur. Universidad Nacional de Mar del Plata, pp. 23-39.

Madella M., Alexandre A., Ball T. 2005: International Code for Phytolith Nomenclature 1.0. Annals of Botany 96: 253-260. https://doi.org/10.1093/aob/mci172

Marosi S., Somogyi S. (szerk.) 1990: Magyarország Kistájainak Katasztere. Magyar Tudományos Akadémia, Földrajztudományi Kutató Intézet, Budapest

Matichencov V.V., Bocharnikova E.A. 2001: The relationship between silicon and soil physical and chemical properties. In: Datnoff L.E., Snyder G.H. & Korndörfer, G.H. (eds.): Silicon in Agriculture. Elsevier Science B.V., pp. 209-219. https://doi.org/10.1016/S0928-3420(01)80017-3

Mckeague J. A., Cline M. G., 1963: Silica in soils. Adv. Agronomy, v. 15, pp. 339-396. https://doi.org/10.1016/S0065-2113(08)60403-4

MSZ-08-0210-77. 1977: A talaj szerves szén tartalmának meghatározása. Magyar Szabványügyi Hivatal, Budapest MSZH-Nyomda, pp. 6

MSZ-08-0205-78. 1978: A talaj fizikai és vízgazdálkodási tulajdonságainak vizsgálata. Magyar Szabványügyi Hivatal, Budapest MSZH-Nyomda, pp. 39

MSZ-08-0206/2-78. 1978: A talaj egyes kémiai tulajdonságainak vizsgálata. Laboratóriumi vizsgálatok (pH érték, szódában kifejezett fenoftalein lúgosság, vízben oldható összes só, hidrolitos (y1 érték) és kicserélődési aciditás (y2 érték). Magyar Szabványügyi Hivatal, Budapest MSZH-Nyomda, pp. 12

MSZ-08-0452-80. 1980: Nagyteljesítményű műszersorok alkalmazása talajvizsgálatokban. A talaj szerves szén tartalmának meghatározása Contiflo műszersoron. Magyar Szabványügyi Hivatal, Budapest MSZH- Nyomda, pp. 7

MSZ- 21470/51-83. 1983: Környezetvédelmi talajvizsgálatok. A talaj kötöttségének meghatározása. Magyar Szabványügyi Hivatal, Budapest MSZH-Nyomda, pp. 3

MSZ 1398:1998. 1988: Talajszelvény kijelölése, feltárása és leírása talajtérkép készítéséhez. Magyar Szabvány- ügyi Testület, Budapest, pp. 13

Munsell Soil Colour Charts. 1990: Soil Survey Manual - U. S. Dept. Agriculture Handbook - 18.

Osterrieth M.L., Madella M., Zurro D., Fernanda Alvarez M. 2009: Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quaternary International 193: 70-79. https://doi.org/10.1016/j.quaint.2007.09.002

Parmenter C., Folger D.W., 1974: Eolian Biogenic Detritus in Deep Sea Sediments: A Possible Index of Equatorial Ice Age Aridity. Science 184: 695-698. https://doi.org/10.1126/science.185.4152.695

Pearsall D.M. 2000: Paleoethnobotany. A handbook of procedures. Academic Press, London

Pető Á. 2010a: A növényi opálszemcsék kutatásának rövid tudománytörténeti áttekintése a felfedezéstől napjainkig. Tájökológiai lapok 7: 39-63.

Pető Á. 2009b: A fitolitkutatás szerepe az őskörnyezettanban és a környezetrégészetben, valamint hazai alkalmazásának lehetőségei. Archeometriai Műhely 2009/2: 15-30.

Piperno D.R. 1988: Phytolith analysis: An Archaeological and Geological Perspective. Academic Press, Harcourt Brace Jovanovich, Publishers, San Diego, pp. 268

Piperno D. R. 2006: Phytoliths. A comprehensive guide for archaeologists and palaeoecologists. Altamira Press, pp. 238

Sangster A. G., Hodson M. J., 1986: Silica in higher plants, In: Ciba Foundation Symposium 121. J. Wiley & Sons, Chichester, pp. 90-111. https://doi.org/10.1002/9780470513323.ch6

Sauer D., Saccone L., Conley D.J., Hermann L., Sommer M. 2006: A review of methodologies for extracting plant-available and amorphus Si from soils and aquatic sediments. Biogeochemistry 80: 89-108. https://doi.org/10.1007/s10533-005-5879-3

Skjemstad J.O., 1992: Genesis of Podzols on Coastal Dunes in Southern Queensland. III. The Role of Aluminum- Organic Complexes in Profile Development. Australian Journal of Soil Research, 30: 645-665. https://doi.org/10.1071/SR9920645

Skjemstad J.O., Fitzpatric R.W., Zarcinas B.A., Thompson C.H., 1992: Genesis of Podzols on Coastal Dunes in Southern Queensland. II. Geochemistry and Forms of Elements as Deduced from Various Soil Extraction Procedures. Australian Journal of Soil Research, 30: 615-644. https://doi.org/10.1071/SR9920615

Sommer M., Kaczorek D., Kuzyakov Y., Breuer J. 2006: Silicon pools and fluxes in soils and landscapes - a review. Journal of Plant Nutrition and Soil Science 169: 310-379 https://doi.org/10.1002/jpln.200521981

Stefanovits P. 1963: Magyarország talajai. Akadémiai Kiadó, Budapest.

Stefanovits P. (szerk.), Filep Gy., Füleky Gy. 1999: Talajtan. Mezőgazda Kiadó, Budapest, pp. 469

Szabolcs I. (szerk.) 1966: A genetikus üzemi talajtérképezés módszerkönyve. OMMI, Budapest, pp. 428

TIM Módszertan 1995: Talajvédelmi Információs és Monitoring Rendszer 1. kötet: Módszertan. Földművelésügyi Minisztérium, Növényvédelmi és Agrár-környezetgazdálkodási Főosztály, Budapest, pp. 92

Útmutató 1988: Útmutató a nagyméretarányú országos talajtérképezés végrehajtásához. Agrárinformációs Vállalat, Budapestm, pp.150.

van Breemen N., Buurman P., 2002: Soil formation. Kluwer Academic Press, Dordrecht. https://doi.org/10.1007/0-306-48163-4

van Breemen N., Finlay R., Lundström U., Jongmans A.G., Giesler R., Olsson M., 2000: Mycorrhizal weathering: A true case of mineral plant nutrition? Biogeochem. 49: 53-67. https://doi.org/10.1023/A:1006256231670

Wilding L.P. 1967: Radiocarbon dating of biogenetic opal. Science 156. (3771): 66-67. https://doi.org/10.1126/science.156.3771.66

Wollast R., Mackenzie F.T. 1983: Global cycle of silica. In: Aston S. R. (ed.): Silicon Geochemistry and Biogeochemistry, Academic Press, 39-76.

Published

2010-04-24

Issue

Section

Tanulmányok, eredeti közlemények

How to Cite

Phytolith profile cadastre of the most significant and abundant soil types of Hungary I–II.: Methodological aspects and results of the examined mountain, rocky soils and. (2010). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 8(1), 157-206. https://doi.org/10.56617/tl.3970

Similar Articles

11-20 of 53

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>