In silico identification of putative barley phytochrome interacting factors (PIFs)

Szerzők

  • Gierczik Krisztián Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár https://orcid.org/0000-0003-1605-4663
  • Vágújfalvi Attila Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár
  • Galiba Gábor Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár https://orcid.org/0000-0001-7504-935X
  • Kalapos Balázs Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár https://orcid.org/0000-0003-2340-4270

Kulcsszavak:

árpa, in silico analízis, filogenetikus fa, bHLH fehérje család, PIF

Absztrakt

A PIF (Phytochrome Interacting Factor) transzkripciós faktorok a bHLH (bázikus hélix-hurok-hélix) domént tartalmazó fehérjecsaládba tartoznak. Fontos szerepet játszanak a fény által aktivált jelátviteli útvonalakban, mivel képesek kapcsolatot kialakítani a fitokróm fotoreceptorokkal, amelyek a spektrum vörös és távoli-vörös tartományában rendelkeznek elnyelési maximummal. Mindezidáig csak kevés publikáció ismert, amelyek különböző növények PIF génjeinek azonosításáról szól. Ebben a tanulmányban in silico módszerekkel azonosítottuk az árpa (Hordeum vulgare L.) bHLH fehérjéit, majd filogenetikai módszerekkel alcsoportokba osztottuk őket. Összesen 9 egyedi árpa fehérjét azonosítottunk a VII (a+b) alcsoportból, amely más növény fajokban a PIF szekvenciákat is tartalmazta, tehát feltételezésünk szerint sikerült árpa PIF fehérjéket azonosítanunk. Eredményeink alapul szolgálhatnak a jövőben az árpa PIF fehérjék összehasonlító analíziséhez, majd azok funkcionális vizsgálataihoz.

Információk a szerzőről

  • Gierczik Krisztián, Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár

    levelezőszerző
    gierczik.krisztian@agrar.mta.hu

Hivatkozások

Clack T., Mathews S., and Sharrock R.A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology. 25, 413–427. https://doi.org/10.1007/BF00043870

Crooks, G. E., Hon, G., Chandonia, J.-M. and Brenner, S. E. 2004. WebLogo: A Sequence Logo Generator. Genome Research. 14, 1188–1190. https://doi.org/10.1101/gr.849004

Demarsy, E., Goldschmidt-Clermont, M. and Ulm R. 2018. Coping with 'Dark Sides of the Sun' through Photoreceptor Signaling. Trends in Plant Science. 23 (3) 260–271. https://doi.org/10.1016/j.tplants.2017.11.007

Eddy, S. R. 2009. A New Generation of Homology Search Tools Based on Probabilistic Inference. Genome Informatics. 205–211. https://doi.org/10.1142/9781848165632_0019

Finn, R. D., Coggill, P., Eberhardt, R. Y. et al., 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research. 44 (D1) D279–D285. https://doi.org/10.1093/nar/gkv1344

Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y. and Takahashi, T. 2006. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development. 133 (18) 3575–3585. https://doi.org/10.1242/dev.02535

Jones, S. 2004. An overview of the basic helix-loop-helix proteins. Genome Biology. 5, 226.

Kersey, P. J., Allen, J. E., Allot, A. et al. 2018. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research. 46 (D1) D802–D808. https://doi.org/10.1093/nar/gkx1011

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 35 (6) 1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar, I., Swaminathan, K., Hudson, K. and Hudson, M. E. 2016. Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling. Journal of Experimental Botany. 67 (14) 4231–4240. https://doi.org/10.1093/jxb/erw217

Larkin, M. A., Blackshields, G., Brown, N. P. et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23 (21) 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Lu, X. D., Zhou, C. M., Xu, P. B., Luo, Q., Lian, H. L. and Yang, H. Q. 2015. Red-LightDependent Interaction of phyB with SPA1 Promotes COP1-SPA1 Dissociation and Photomorphogenic Development in Arabidopsis. Molecular Plant. 8 (3) 467–478. https://doi.org/10.1016/j.molp.2014.11.025

Mathews, S. and Sharrock, R. A. 1996. The Phytochrome Gene Family in Grasses (Poaceae): A Phylogeny and Evidence that Grasses Have a Subset of the Loci Found in Dicot Angiosperms. Molecular Biology and Evolution. 13 (8) 1141–1150. https://doi.org/10.1093/oxfordjournals.molbev.a025677

Nakamura, Y., Kato, T., Yamashino, T., Murakami, M. and Mizuno, T. 2007. Characterization of a Set of Phytochrome-Interacting Factor-Like bHLH Proteins in Oryza sativa. Bioscience, Biotechnology, and Biochemistry. 71 (5) 1183–1191. https://doi.org/10.1271/bbb.60643

Ni, M., Tepperman, J.M. and Quail, P.H. 1998. PIF3, a Phytochrome-Interacting Factor Necessary for Normal Photoinduced Signal Transduction, Is a Novel Basic Helix-Loop-Helix Protein. Cell. 95 (5) 657–667. https://doi.org/10.1016/S0092-8674(00)81636-0

Ni, M., Tepperman, J. M. and Quail, P. H., 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature. 400, 781–784. https://doi.org/10.1038/23500

Paik, I., Kathare, P. K., Kim, J.-I. and Huq, E. 2017. Expanding Roles of PIFs in Signal Integration from Multiple Processes. Molecular Plant. 10 (8) 1035–1046. https://doi.org/10.1016/j.molp.2017.07.002

Pham, V. N., Kathare, P. K. and Huq, E. 2018. Phytochromes and Phytochrome Interacting Factors. Plant Physiology. 176 (2)1025–1038. https://doi.org/10.1104/pp.17.01384

Pires, N. and Dolan, L. 2010. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution. 27 (4) 862–874. https://doi.org/10.1093/molbev/msp288

Rockwell, N. C., Su, Y.-S. and Lagarias, J. C. 2006. Phytochrome Structure and Signaling Mechanisms. Annual Review of Plant Biology. 57, 837–858. https://doi.org/10.1146/annurev.arplant.56.032604.144208

Sievers, F., Wilm, A., Dineen, D. et al., 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7. 539. https://doi.org/10.1038/msb.2011.75

Toledo-Ortiz, G., Huq, E. and Quail, P. H. 2003. The Arabidopsis Basic/Helix-Loop- Helix Transcription Factor Family. The Plant Cell. 15 (8) 1749–1770. https://doi.org/10.1105/tpc.013839

Letöltések

Megjelent

2019-11-07

Folyóirat szám

Rovat

Cikkek

Hogyan kell idézni

Gierczik, K., Vágújfalvi, A., Galiba, G., & Kalapos, B. (2019). In silico identification of putative barley phytochrome interacting factors (PIFs) . GEORGIKON FOR AGRICULTURE, 23(2), 2-15. https://journal.uni-mate.hu/index.php/gfa/article/view/6304

Hasonló cikkek

1-10 a 62-ból/ből

You may also Haladó hasonlósági keresés indítása for this article.