In silico identification of putative barley phytochrome interacting factors (PIFs)
Kulcsszavak:
árpa, in silico analízis, filogenetikus fa, bHLH fehérje család, PIFAbsztrakt
A PIF (Phytochrome Interacting Factor) transzkripciós faktorok a bHLH (bázikus hélix-hurok-hélix) domént tartalmazó fehérjecsaládba tartoznak. Fontos szerepet játszanak a fény által aktivált jelátviteli útvonalakban, mivel képesek kapcsolatot kialakítani a fitokróm fotoreceptorokkal, amelyek a spektrum vörös és távoli-vörös tartományában rendelkeznek elnyelési maximummal. Mindezidáig csak kevés publikáció ismert, amelyek különböző növények PIF génjeinek azonosításáról szól. Ebben a tanulmányban in silico módszerekkel azonosítottuk az árpa (Hordeum vulgare L.) bHLH fehérjéit, majd filogenetikai módszerekkel alcsoportokba osztottuk őket. Összesen 9 egyedi árpa fehérjét azonosítottunk a VII (a+b) alcsoportból, amely más növény fajokban a PIF szekvenciákat is tartalmazta, tehát feltételezésünk szerint sikerült árpa PIF fehérjéket azonosítanunk. Eredményeink alapul szolgálhatnak a jövőben az árpa PIF fehérjék összehasonlító analíziséhez, majd azok funkcionális vizsgálataihoz.
Hivatkozások
Clack T., Mathews S., and Sharrock R.A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology. 25, 413–427. https://doi.org/10.1007/BF00043870
Crooks, G. E., Hon, G., Chandonia, J.-M. and Brenner, S. E. 2004. WebLogo: A Sequence Logo Generator. Genome Research. 14, 1188–1190. https://doi.org/10.1101/gr.849004
Demarsy, E., Goldschmidt-Clermont, M. and Ulm R. 2018. Coping with 'Dark Sides of the Sun' through Photoreceptor Signaling. Trends in Plant Science. 23 (3) 260–271. https://doi.org/10.1016/j.tplants.2017.11.007
Eddy, S. R. 2009. A New Generation of Homology Search Tools Based on Probabilistic Inference. Genome Informatics. 205–211. https://doi.org/10.1142/9781848165632_0019
Finn, R. D., Coggill, P., Eberhardt, R. Y. et al., 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research. 44 (D1) D279–D285. https://doi.org/10.1093/nar/gkv1344
Imai, A., Hanzawa, Y., Komura, M., Yamamoto, K. T., Komeda, Y. and Takahashi, T. 2006. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development. 133 (18) 3575–3585. https://doi.org/10.1242/dev.02535
Jones, S. 2004. An overview of the basic helix-loop-helix proteins. Genome Biology. 5, 226.
Kersey, P. J., Allen, J. E., Allot, A. et al. 2018. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research. 46 (D1) D802–D808. https://doi.org/10.1093/nar/gkx1011
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution. 35 (6) 1547–1549. https://doi.org/10.1093/molbev/msy096
Kumar, I., Swaminathan, K., Hudson, K. and Hudson, M. E. 2016. Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling. Journal of Experimental Botany. 67 (14) 4231–4240. https://doi.org/10.1093/jxb/erw217
Larkin, M. A., Blackshields, G., Brown, N. P. et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23 (21) 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
Lu, X. D., Zhou, C. M., Xu, P. B., Luo, Q., Lian, H. L. and Yang, H. Q. 2015. Red-LightDependent Interaction of phyB with SPA1 Promotes COP1-SPA1 Dissociation and Photomorphogenic Development in Arabidopsis. Molecular Plant. 8 (3) 467–478. https://doi.org/10.1016/j.molp.2014.11.025
Mathews, S. and Sharrock, R. A. 1996. The Phytochrome Gene Family in Grasses (Poaceae): A Phylogeny and Evidence that Grasses Have a Subset of the Loci Found in Dicot Angiosperms. Molecular Biology and Evolution. 13 (8) 1141–1150. https://doi.org/10.1093/oxfordjournals.molbev.a025677
Nakamura, Y., Kato, T., Yamashino, T., Murakami, M. and Mizuno, T. 2007. Characterization of a Set of Phytochrome-Interacting Factor-Like bHLH Proteins in Oryza sativa. Bioscience, Biotechnology, and Biochemistry. 71 (5) 1183–1191. https://doi.org/10.1271/bbb.60643
Ni, M., Tepperman, J.M. and Quail, P.H. 1998. PIF3, a Phytochrome-Interacting Factor Necessary for Normal Photoinduced Signal Transduction, Is a Novel Basic Helix-Loop-Helix Protein. Cell. 95 (5) 657–667. https://doi.org/10.1016/S0092-8674(00)81636-0
Ni, M., Tepperman, J. M. and Quail, P. H., 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature. 400, 781–784. https://doi.org/10.1038/23500
Paik, I., Kathare, P. K., Kim, J.-I. and Huq, E. 2017. Expanding Roles of PIFs in Signal Integration from Multiple Processes. Molecular Plant. 10 (8) 1035–1046. https://doi.org/10.1016/j.molp.2017.07.002
Pham, V. N., Kathare, P. K. and Huq, E. 2018. Phytochromes and Phytochrome Interacting Factors. Plant Physiology. 176 (2)1025–1038. https://doi.org/10.1104/pp.17.01384
Pires, N. and Dolan, L. 2010. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Molecular Biology and Evolution. 27 (4) 862–874. https://doi.org/10.1093/molbev/msp288
Rockwell, N. C., Su, Y.-S. and Lagarias, J. C. 2006. Phytochrome Structure and Signaling Mechanisms. Annual Review of Plant Biology. 57, 837–858. https://doi.org/10.1146/annurev.arplant.56.032604.144208
Sievers, F., Wilm, A., Dineen, D. et al., 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology. 7. 539. https://doi.org/10.1038/msb.2011.75
Toledo-Ortiz, G., Huq, E. and Quail, P. H. 2003. The Arabidopsis Basic/Helix-Loop- Helix Transcription Factor Family. The Plant Cell. 15 (8) 1749–1770. https://doi.org/10.1105/tpc.013839
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2019 Gierczik Krisztián, Vágújfalvi Attila, Galiba Gábor, Kalapos Balázs

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.