The possible role of urban wastewater treatment plants in nutrient- and energy management

Authors

Keywords:

sludge, sewage plants, urban waste, biogas, biomethane

Abstract

In our article, we deal with the potential role of wastewater plants in energy generation and nutrient management. We primarily deal with larger size plants, since in these plants there is a wider spectrum of energy and nutrient management options. This is due to, inter alia, economies of scale, higher amounts of homogeneous raw material and, consequently, easier utilization and qualification of different products. In our estimates we have found that a purification plant using anaerobic technology for a population of 100,000 households can produce 2900 m3 of biogas per day and from this about 1900 m3 per day of biomethane. As regards the nutrient management of the site, the amount of the macro-element content of the incoming wastewater, which is approximately 13,000 m3, is 281.000 HUF (~ EUR 900) of TKN (Total Nitrogen, 1.3 t/day) and 68.000 HUF (~ EUR 220) of TP (total phosphorus 0.2 t/day). In the outgoing purified water there is a TKN of HUF 42.000 (~ EUR 133), and a TP of HUF 4.400 (~ EUR 14). The methods and the values used in the calculations can serve as basic data for further comparative tests and potentials for different size plants.

Author Biography

  • Zoltán Gabnai, University of Debrecen, Faculty of Economics and Business

    corresponding author
    gabnai.zoltan@econ.unideb.hu

References

Bodáné Kendrovics, R. 2018. A szennyvíz mezőgazdasági felhasználásának indokai és feltételei. Hírcsatorna. A Magyar Víz- és Szennyvíztechnikai Szövetség Lapja. 6. 5–23.

Dittrich, E. 2016. Possibilities of application of natural wastewater treatment - our services - references. URL: http://www.lentileader.hu/feltoltes/files/6_EA_dittrich_erno_gyokerzonas_ Hidro_Consulting.pdf

Dulovics, D. 2012. A szennyvíztechnika energiakérdései. URL: http://docplayer.hu/18253815-Hir-maszesz-hirhozo-2-dulovics-dezso-a-szennyviztechnikaenergiakerdesei-3.html

Fogarassy, Cs., Nábrádi, A. 2015. Proposals for low-carbon agriculture production strategies between 2020 and 2030 in Hungary. APSTRACT: Applied Studies in Agribusiness and Commerce. 9 (4) 5–15. https://doi.org/10.19041/APSTRACT/2015/4/1

Gabnai, Z., Gál, B. S. 2016. A szennyvíziszap-hasznosítás energetikai és egyéb lehetőségei. Journal of Central European Green Innovation. 4 (1) 13–30.

Geissdoerfer, M., Savaget, P., Bocken, N., Hultink, E. 2017. The Circular Economy - A New Sustainability Paradigm? Journal of Cleaner Production. 143 (1),757–768. IN: Kiss, . (2018): Kék gazdaság vs. körforgásos gazdaság. URL: https://mta.hu/esemenynaptar/2017-04-13-korforgasos-gazdasag-a-realitas-hatarai-1051. https://doi.org/10.1016/j.jclepro.2016.12.048

Grant, N., Moodie, M., Weedon, C. 2012. The centre for alternative technology, Choosing ecological Sewage treatment. CAT Publication. 184. IN: Veres Z. T. (2015): Hagyományos aktíviszapos szennyvíztisztító telepek fejlesztéseinek potenciális hatékonysága. Doktori (PhD) értekezés. Debreceni Egyetem TTK.

Jámbor, A., Mizik, T. 2008. Bioethanol - Who is the Winner? In: Schäfer, C., Rupschus, C., Nagel, U. J. (editors): Enhancing the Capacities of Agricultural Systems and Producers. MACE, Margraf Publishers, Weikersheim, 210–215.

Kárpáti, Á. 2014. Modern methods of wastewater treatment. University of Pannonia - Institute of Environmental Engineering. 280. ISBN: 978-615-5044-99-1. Veszprém, 2014.

Kárpáti, Á. 2016. Szennyvíztisztítás - energetika - gazdálkodás a lakosság/települések szennyvizének tisztításában. MASZESZ Hírcsatorna, 3, 6–20.

Kovács, Z. 2017. Városok és urbanizációs kihívások Magyarországon. Magyar Tudomány. 178 (3) 302–310.

Kurucz, E., Antal, G., Fári, M. G., Popp, J. 2014. Cost-effective mass propagation of virginia fanpetals (sida hermaphrodita (l. ) rusby) from seeds. Environmental Engineering and Management Journal. 13 (11) 2845–2852. https://doi.org/10.30638/eemj.2014.319

McCarty, L., Bae, J., Kim, J. 2011. Domestic Wastewater Treatment as a Net Energy Producer - Can This be Achieved? Environmental Science & Technology. 45 (17) 7100–7106. https://doi.org/10.1021/es2014264

Nabel, M., Temperton, V. M., Poorter, H., Lücke, A., Jablonowski, N. D. 2016. Energizing marginal soils - The establishment of the energy crop Sida hermaphrodita as dependent on digestate fertilization, NPK, and legume intercropping. Biomass and Bioenergy. 87, 9–16. https://doi.org/10.1016/j.biombioe.2016.02.010

Popp, J., Pető, K., Nagy, J. 2014. Impact of Pesticide Productivity on Food Security. In: Lichtfouse E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews. 13. 19–33. https://doi.org/10.1007/978-3-319-00915-5_2

Popp, J., Kot, S., Lakner, Z., Oláh, J. 2018. Biofuel use: peculiarities and implications. Journal of Security & Sustainability Issues. 7 (3) 477–494. https://doi.org/10.9770/jssi.2018.7.3(9)

Pszczółkowska, A., Romanowska-Duda, Z., Pszczółkowski, W., Grzesik, M., Wysokińska, Z. 2012. Biomass Production of Selected Energy Plants: Economic Analysis and Logistic Strategies. Comparative Economic Research. 15 (3) 77–103. https://doi.org/10.2478/v10103-012-0018-6

Rózsáné Szűcs, B. 2013. Anaerob előkezelés hatása a szennyvíziszapok komposztálására. Doktori (PhD) értekezés. Szent István Egyetem, Környezettudományi Doktori Iskola. 165.

Sato, T., Qadir, M., Yamamoto, S., Endo, T., Zahoor, A. 2013. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agricultural Water Management. 130, 1–13. https://doi.org/10.1016/j.agwat.2013.08.007

Shen, Y., Linville, J. L., Urgun-Demirtas, M., Mintz, M. M., Snyder, S. W. 2015. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs. Renewable and Sustainable Energy Reviews. 50. 346–362. https://doi.org/10.1016/j.rser.2015.04.129

UNESCO 2017. Wastewater. The Untapped Resource. The United Nations World Water Development Report 2017. UNESCO & World Water Assessment Programme. 198

Vityi, A., Marosvölgyi, B. 2014. New tree species for agroforestry and energy purposes. In: Proceedings of the 2014 International Conference on Biology and Biomedicine II. (BIO'14); 2-4 April 2014; Prague, Czech Republic. 82–84. ISBN: 978-1-61804-232-3.

Internet 1: Water scarcity. Land & Water. Food and Agriculture Organization of the United Nations. URL: http://www.fao.org/land-water/water/water-scarcity/en/

Internet 2: Worldometers. URL: http://www.worldometers.info/

Internet 3: Wastewater treatment plants in Hungary. Municipal wastewater information system. URL: http://www.teszir.hu/?module=objektumlista/szennyviztisztito

Internet 4: Average Agricultural Expenditures. KSH (Central Statistical Office) 2018. URL: http://www.ksh.hu/docs/hun/xstadat/xstadat_evkozi/e_qsmb001a.html

Internet 5: Hammarby Sjöstad - a unique environmental project in Stockholm. 40. p. URL: http://large.stanford.edu/courses/2014/ph240/montgomery2/docs/HS_miljo_ bok_eng_ny.pdf

Downloads

Published

2019-12-17

How to Cite

Gabnai, G., & Bai, A. (2019). The possible role of urban wastewater treatment plants in nutrient- and energy management . GEORGIKON FOR AGRICULTURE, 23(3), 120-141. https://journal.uni-mate.hu/index.php/gfa/article/view/6301

Similar Articles

1-10 of 57

You may also start an advanced similarity search for this article.