Effects of heavy metals on the water balance of cucumber detected by MRI measurement
Keywords:
MRI, heavy metals, water balanceAbstract
The purpose of our study was to extend the potential applications of MRI (applied in human diagnostics) to plant-water relations, and to verify the previous knowledge about it. Effects of heavy metals on the water balance of the plants can be examined by MR measurements. Three-week-old seedlings of cucumber (Cucumis sativus) were polluted with Pb-nitrate, Zn-sulfate, Cd-nitrate and Hg-chloride solutions at 10-5 M concentration. The incubation time was 1 week. The plants were grown in nutrient solution in growing chambers. The effects of heavy metals on the water balance were measured by classical method and MRI technique. The MRI measurements were carried out at the Diagnostics and Oncoradiological Institute of the University of Kaposvár (Hungary), using a Siemens Avanto MRI equipment. The MR measurements are made on the spin’s system. The procedure is based on the interaction of the external magnetic field, electromagnetic waves and the hydrogen nucleus’ in the substance. Namely the quantity and distribution of the protons are measured by MR. If we ask a question, where can we find relatively a lot of protons, our answer is in the water. So the MR doesn’t measure the anatomic structure, but the quantity of protons. The anatomic structures are determined by the distribution and quantity of protons. As classical method stomatal resistance was measured by AP4 porometer in conductance mode. Water content was determined by drying until weight consistence. Water content percentage is determined by the dry and fresh weight. Significant differences can be detected between the different heavy metal treatments by MRI measurements, but the classical methods did not prove these deviations. In consequence the MRI measurements can provide more detail information about water content and transport. In addition MRI measurement is a non-destructive method, opposite to the classical techniques. MRI measurement can increase our knowledge on the cycling and pathways of heavy metals in the plants.
References
Berényi, E., Bogner, P., Horváth, Gy. and Repa, I. 1997. Radiológia. Budapest Springer Hungarica Kiadó Kft.
Bouman, B. A. M., Keulen, H., Van Laar, H. H. and Van Rabbinge, R. 1996. The "School of de Wit" crop growth simulation models: a pedigree and historical overview. Agric. Sys. 52. 2–3, 171–198. https://doi.org/10.1016/0308-521X(96)00011-X
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D. Sierra, J., Bertuzzi, P., Burger, P., Bussière, F. Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin B. and Sinoquet, H. 2003. An overview of the crop model . Eur. J. Agron. 3–4. 309–332. https://doi.org/10.1016/S1161-0301(02)00110-7
Földes, T., Bogner, P., Závoda, F. and Repa, I. 2003. A CT és MR vizsgálatok lehetőségei a szénhidrogén kutatásban. Magyar Radiológia 10. 231–237.
Goudriaan, J. and van Laar, H. H. 1994. Modelling Potential Crop Growth Processes. Kluwer Academic Publishers, Dordrecht-Boston-London. p: 238. https://doi.org/10.1007/978-94-011-0750-1
Hernández L. E., Lozano-Rodríguez E., Gárate A. and CarpentaRuiz R. 1998. Influence of cadmium on the uptake, tissue acccumulation and subcellular distribution of manganase in pea seedlings. Plant Sci. 132. 139–51. https://doi.org/10.1016/S0168-9452(98)00011-9
Jackson, R. B., Sperry, J. S. and Dawson, T.E. 2000. Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science. 11 (5) 482–488. https://doi.org/10.1016/S1360-1385(00)01766-0
Jakusch, P., Anda, A. and Tokai, R. 2010. New possibilities in following the transport of water in living plants, Georgikon for Agriculture. Keszthely, G. For Agric. 13 (1) 33–51.
Jarvis, P. G. and Mansfield, T. A. (Editors) 1981. Stomatal Physiology. Society for Experimental Biology: Seminar Series, Cambridge University Press, p. 247–279.
Johnson, J. D. 1981. Two types of ventilated porometers compared on broad leaf and coniferous species. Plant Physiol. 68. 506–508. https://doi.org/10.1104/pp.68.2.506
Kanemasu, E. T. and Tanner, C. B. 1969. Stomatal diffusion resistance of snap beans. I. The influence of leaf-water potential. Plant Physiol. 44. 1547–52. https://doi.org/10.1104/pp.44.11.1547
Ketelapper, H. J. 1963. Stomatal physiology. Ann. Rev. Plant Physiol. 14. 249–69. https://doi.org/10.1146/annurev.pp.14.060163.001341
Lange, O. L., Kappen, L. and Schulze, E. D. 1976. Water and Plant Life. Springer Verlag, New York, p. 169–188. https://doi.org/10.1007/978-3-642-66429-8
Langensiepen, M., Fuchs, M., Bergamaschi, H., Moreshet, S., Cohen, Y., Jutzi, P. W. S. C., Cohen, S., Mauro L., Rosa, Yan Li, G. and Fricke T. 2009. Quantifying the uncertainties of transpiration calculation with Penman-Monteith equation under different climate and water supply conditions. Agric. Forest Meteor. 149 (6–7) 1063–1072. https://doi.org/10.1016/j.agrformet.2009.01.001
Lange, O. L., Kappen, L. and Schulze, E. D. 1976. Water and Plant Life. Springer Verlag, New York, p. 169–188. https://doi.org/10.1007/978-3-642-66429-8
Larcher, W. 2003. Physiological plant ecology. Berlin. ISBN: 3540435166 https://doi.org/10.1007/978-3-662-05214-3
Lozano-Rodriguez, E., Hernandez, L. E., Bonay, P. and CarpenaRuiz, R. O. 1997. Distribution of cadmium in shoot and root tissues. Journal of Experimental Botany. 48 (1) 123–128. https://doi.org/10.1093/jxb/48.1.123
McDermitt, D. K. 1990. Sources of error in the estimation of stomatal conductance and transpiration from porometer data. Hort Science. 25 (12) 1538–1548. https://doi.org/10.21273/HORTSCI.25.12.1538
Meyer, W. S. , Reicosky, D. and Schaffer, N. L. 1985. Errors in field measurement of leaf diffusive conductance associated with leaf temperature. Agric. Forest Meteor. 36. 55–64. https://doi.org/10.1016/0168-1923(85)90065-6
Monteith, J. L. 1973. Principles of Environmental Physics. Edward Arnold Publ., London.
Monteith, J. L. 1976. Vegetation and the Atmosphere. 1–2. Academic Press, New York.
Monteith, J. L. 1990. Porometry and baseline analysis: the case for compatibility. Agric. Forest Meteor. 49. 155–167. https://doi.org/10.1016/0168-1923(90)90048-B
Norman, J. M, Sulliven, C. Y., Harrison, T. and Eckles, R. 1981. Comparison of four porometers under field conditions. Agron. Abst. 73. 93–108.
Norman, J. M. 1979. Modeling the complete crop. canopy. In: B. J. Barfield & J. F. Gerber. Modification of the aerial environment of crops. (Eds.) B. J. Barfield and J. F. Gerber. Amer. Soc. of Agric. Eng. Michigan. p. 249–277.
Novak, V., Hurtalová, T. and Matejka, F. 2005. Prediction of soil water content and soil water potential on transpiration of maize. Agricultural Water Management. 76 (3) 211–223. https://doi.org/10.1016/j.agwat.2005.01.009
Pearcy, R. W., Ehleringer, J., Mooney, H. A. and Rundel, P.W. 1991. Plant Physiological Ecology. Chapman and Hall, London-New York-Tokyo p: 457.
Pronk T. E., During H. J. and Schieving, F. 2007. Coexistence by temporal partitioning of the available light in plants with different height and leaf investments. Ecological modeling. 3–4. 349–358. https://doi.org/10.1016/j.ecolmodel.2007.01.019
Sárvári, É., Fodor, F., Cseh, E., Varga, A., Záray, Gy. and Zolla, L. 1999. Relationship between Changes in Ion Content of Leaves and Chlorophyll-Protein Composition in Cucumber under Cd and Pb stress. Z. Naturforschung 54c 746–753. https://doi.org/10.1515/znc-1999-9-1021
Seregin, I. V., Shpigun, L. K. and V. B. Ivanov 2003. Distribution and Toxic Effects of Cadmium and Lead on Maize Roots. Russian Journal of Plant Physiology. 51. 525–533. https://doi.org/10.1023/B:RUPP.0000035747.42399.84
Shawcroft, R. W., Lemon, E. R., Allen, L. H., Stewart, D. W. and Jensen, S. E. 1974. The soil-plant-atmosphere model and some of its applications. Agric. Meteor. 14. 287–307. https://doi.org/10.1016/0002-1571(74)90025-9
Sutcliffe, J. 1982. A növények és a víz. MgK, Budapest.
Xiangyang, Bi., Xinbin, F., Yuangen, Y., Xiangdong, L., Grace, P. Y., Feili, L., Guangle, Q., Guanghui, L., Taoze, L. and Zhiyou, F. 2009. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollutions. 157 (3) 834–839. https://doi.org/10.1016/j.envpol.2008.11.013
Downloads
Published
Issue
Section
License
Copyright (c) 2011 Jakusch Pál, Anda Angéla, Földes Tamás, Tokai Richárd, Hatvani István, Kocsis Tímea

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).