The negative effects of climate change on the chicken reproductive system
DOI:
https://doi.org/10.17205/SZIE.AWETH.2023.1.092Keywords:
climate change, chicken, primordial germ cells, cell cultureAbstract
It is now well established that animal adaptation to heat stress is one of the most critical elements of the future of agriculture. Breeders, due to broad usage of poultry in the EU and worldwide, have to face with changing farming conditions.
Fertilized eggs of Transylvanian Naked Neck Chicken were collected from three groups of hens at National Centre for Biodiversity and Gene Conservation - Institute for Farm Animal Conservation in Gödöllő (NBGC - IFC), Hungary, then incubated at 38°C at 60% humidity. The first one, the control group (C), grew up under normal conditions without exposure to any heat treatment and stress. In the second group (HTHS) the 2-day old chicks were subjected to heat treatment (38.5oC) for the first 12 hours followed by heat stress 30oC at 23-week old continuing about 12 weeks long. The third group (HS) was only heat stressed.
In our work, different reproduction parameters and embryo developmental rate of three groups were compared.
In the field of biotechnology, it is a long-awaited goal to establish stem cell lines isolated from the avian embryos. Our group established 26 Primordial Germ Cell (PGC) lines derived from embryos developed in the eggs of heat-treated and non-treated hens. By using these PGC lines, our group can examine the impact of heat stress on the next generation of heat-treated chickens.
The main family of microRNA (miRNA) studied in chicken is miR-138. Our analysis indicated that in the HTHS there is a higher miR-138 expression in PGC than in the control group. We found an increased level of another miRNA expression in PGC of chicken when we used the heat treatment.
Using these established PGC lines, we can characterize the effect of heat treatment and heat stress in the next generation.
References
De Melo Bernardo, A., Sprenkels, K., Rodrigues, G., Noce, T., Chuva De Sousa Lopes, S. M. (2012): Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation. Biol. Open, 1. 1146–1152. https://doi.org/10.1242/bio.20122592
FAO (2007): Interlaken Declaration on Animal Genetic Resources. GlobalPlan of Action for Animal Genetic Resources. Letöltve: http://www.fao.org/3/a-a1404e.pdf
FAO Report (2013): Status And Trends Of Animal Genetic Resources. 14th Session, 2013. Rome. Letöltve: http://www.fao.org/3/my867en/my867en.pdf
Furlong R. F. (2005): „Insights into vertebrate evolution from the chicken genome sequence”, Genome Biol., 6. 2. 207. https://doi.org/10.1186/gb-2005-6-2-207
Hamburger, V., Hamilton, H. L. (1951): A series of normal stages in the development of the chick embryo, Journal of morphology, 88. 1. 49–92. https://doi.org/10.1002/jmor.1050880104
Intarapat, S. (2011): Isolation and characterisation of chick embryonic primordial germ cell. PhD thesis, Developmental and Stem Cell Biology Department of Cell and Developmental Biology University College London (UCL) London, United Kingdom.
KIFÜ HPC infrastruktúra. 2018. https://hpc.kifu.hu/hu/a-kifu-hpc-infrastrukturaja
Kisliouk, T., Yosefi, S., Meiri, N. (2011): MiR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur J Neurosci., 33. 2. 224–235. https://doi.org/10.1111/j.1460-9568.2010.07493.x
Lázár, B., Anand, M., Tóth, R., Várkonyi, E.P., Liptói, K., Gócza, E. (2018): Comparison of the MicroRNA Expression Profiles of Male and Female Avian Primordial Germ Cell Lines. Stem Cells Int., 10. 2018:1780679. https://doi.org/10.1155/2018/1780679
Lázár, B., Tóth, R., Nagy, A., Anand, M., Liptói, K., Patakiné Várkonyi, E., Gócza, E. (2017): Primordial germ cell-based biobanking of Hungarian indigenous chicken breeds. Poult. Sci., 96. 62.
Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., Zhao, Y., Nawab, Y., Li, K., Xiao, M., An L. (2018): Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol., 78. 131–139. https://doi.org/10.1016/j.jtherbio.2018.08.010
Prastowo, S. & Ratriyanto, A. (2021): miRNA target prediction of avian Z-linked DMRT1 gene during sex determination in chicken (G. Gallus). IOP Conference Series: Earth and Environmental Science, 905. 012148. https://doi.org/10.1088/1755-1315/905/1/012148.
Silva, R., Joost, S., Lessard, C., Moran, D. (2023): The economics of gene banking. In Editor (Ed.). Boes, J., Boettcher, P. & Honkatukia, M., eds. 2023. Innovations in cryoconservation of animal genetic resources - Practical guide. FAO Animal Production and Health Guidelines, No. 33. Rome. 10.4060/cc3078en.
Tavares, A.L.P., Brown, J.A., Ulrich, E.C., Dvorak, K., Runyan, R.B. (2018): Runx2-I is an Early Regulator of Epithelial-Mesenchymal Cell Transition in the Chick Embryo. Dev Dyn., 247. 3. 542–554. https://doi.org/10.1002/dvdy.24539
Tóth, R., Lázár, B., Anand, M., Nagy, A., Patakiné Várkonyi, E., Gócza, E. (2017): Comparison the germ and stem cell specific marker expression in male and female embryo derived chicken PGCs. In: Heiszler, Zs., Hohol, R. and Éles-Etele, N. (eds) Hungarian Molecular Life Sciences Conference. Programme and Book of Abstracts. Eger, Hungary. 240–241.
Tóth, R., Tokodyné Szabadi, N., Lázár, B., Buda, K., Végi, B., Barna, J., Patakiné Várkonyi, E., Liptói, K., Pain, B., Gócza, E. (2021): Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals, 11. 6. 1575. https://doi.org/10.3390/ani11061575
Tóth, R.I., Lázár, B., Tokodyné Szabadi, N., Patakiné Várkonyi, E., Gócza, E. (2019): Őshonos magyar tyúkfajták, mint lehetséges univerzálisrecipiensek az ősivarsejt alapú génmegőrzésben. Magyar Állatorvosok Lapja, 141. 439–447.
Vinoth, A., Thirunalasundari, T., Shanmugam, M., Uthrakumar, A., Suji, S., Rajkumar, U. (2018): Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones, 23. 2. 235–252. https://doi.org/10.1007/s12192-017-0837-2
Warris, S., Timal, N.R.N., Kempenaar, M., Poortinga, A.M., van de Geest, H., Varbanescu, A.L., Nap, J.P. (2018): pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment. PLoS One, 13. 1. e0190279. https://doi.org/10.1371/journal.pone.0190279
Whyte, J., Glover, J. D., Woodcock, M., Brzeszczynska, J., Taylor, L., Sherman, A., Kaiser, P., McGrew, M. J. (2015): FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal. Stem Cell Reports, 5. 6. 1171–1182. https://doi.org/10.1016/j.stemcr.2015.10.008
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Tokodyné Szabadi Nikolett, Tóth Roland, Lázár Bence, Várkonyi Eszter, Liptói Krisztina, Tokody Dániel, Ady László, Gócza Elen
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.